Junji Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020118/publications.pdf

Version: 2024-02-01

394286 377752 1,368 35 19 34 h-index citations g-index papers 37 37 37 1728 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8
2	Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nature Communications, 2021, 12, 2681.	5.8	45
3	DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Reports, 2021, 35, 109205.	2.9	28
4	Editorial: Sensing DNA in Antiviral Innate Immunity. Frontiers in Immunology, 2021, 12, 644310.	2.2	6
5	EphA2 phosphorylates <scp>NLRP</scp> 3 and inhibits inflammasomes in airway epithelial cells. EMBO Reports, 2020, 21, e49666.	2.0	25
6	Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions. Journal of Immunology, 2019, 203, 873-880.	0.4	27
7	Human Semaphorin-4A drives Th2 responses by binding to receptor ILT-4. Nature Communications, 2018, 9, 742.	5.8	47
8	TRIM29 Negatively Regulates the Type I IFN Production in Response to RNA Virus. Journal of Immunology, 2018, 201, 183-192.	0.4	63
9	TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nature Communications, 2017, 8, 945.	5.8	150
10	Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nature Immunology, 2016, 17, 1373-1380.	7.0	151
11	<i>In Vitro</i> and <iin i="" vivo<=""> Characterizations of Pichinde Viral Nucleoprotein Exoribonuclease Functions. Journal of Virology, 2015, 89, 6595-6607.</iin>	1.5	42
12	Differential Inhibition of Macrophage Activation by Lymphocytic Choriomeningitis Virus and Pichinde Virus Is Mediated by the Z Protein N-Terminal Domain. Journal of Virology, 2015, 89, 12513-12517.	1.5	28
13	The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production. Journal of Virology, 2015, 89, 2944-2955.	1.5	112
14	Herpes Simplex Virus 1-Encoded Tegument Protein VP16 Abrogates the Production of Beta Interferon (IFN) by Inhibiting NF-κB Activation and Blocking IFN Regulatory Factor 3 To Recruit Its Coactivator CBP. Journal of Virology, 2013, 87, 9788-9801.	1.5	128
15	Herpes Simplex Virus 1 Tegument Protein US11 Downmodulates the RLR Signaling Pathway via Direct Interaction with RIG-I and MDA-5. Journal of Virology, 2012, 86, 3528-3540.	1.5	148
16	Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1. Journal of General Virology, 2012, 93, 1869-1875.	1.3	20
17	A PY-nuclear localization signal is required for nuclear accumulation of HCMV UL79 protein. Medical Microbiology and Immunology, 2012, 201, 381-387.	2.6	18
18	Live cell imaging fails to support viral-protein-mediated intercellular trafficking. Archives of Virology, 2012, 157, 1383-1386.	0.9	1

#	Article	IF	CITATIONS
19	Characterization of nuclear import and export signals determining the subcellular localization of WD repeatâ€containing protein 42A (WDR42A). FEBS Letters, 2012, 586, 1079-1085.	1.3	7
20	Antiserum to the recombinant truncated VP22 protein of herpes simplex virus type 1 that also recognizes full-length VP22. Acta Virologica, 2011, 55, 69-73.	0.3	2
21	A novel virus-encoded nucleocytoplasmic shuttling protein: The UL3 protein of herpes simplex virus type 1. Journal of Virological Methods, 2011, 177, 206-210.	1.0	7
22	Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Medical Microbiology and Immunology, 2011, 200, 61-68.	2.6	37
23	Screening and identification of host factors interacting with UL14 of herpes simplex virus 1. Medical Microbiology and Immunology, 2011, 200, 203-208.	2.6	5
24	Molecular determinants responsible for the subcellular localization of HSV-1 UL4 protein. Virologica Sinica, 2011, 26, 347-356.	1.2	5
25	Cloning of the Herpes smplex virus Type 1 genome as an novel luciferase infectious bacterial artificial chromosome. BMC Proceedings, 2011, 5, .	1.8	0
26	Screening and identification of host cellular factors interaction with immediate-early protein ICP22 of herpes simplex virus type $1.BMC$ Proceedings, $2011,5,.$	1.8	0
27	Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BMC Proceedings, 2011, 5, .	1.8	1
28	Varicella-Zoster Virus Immediate-Early Protein ORF61 Abrogates the IRF3-Mediated Innate Immune Response through Degradation of Activated IRF3. Journal of Virology, 2011, 85, 11079-11089.	1.5	110
29	Comprehensive Characterization of Interaction Complexes of Herpes Simplex Virus Type 1 ICP22, UL3, UL4, and UL20.5. Journal of Virology, 2011, 85, 1881-1886.	1.5	53
30	Characterization of the nuclear import and export signals, and subcellular transport mechanism of varicella-zoster virus ORF9. Journal of General Virology, 2011, 92, 621-626.	1.3	18
31	The nucleolus and viral infection. Virologica Sinica, 2010, 25, 151-157.	1.2	20
32	Granulysin Production and Anticryptococcal Activity Is Dependent upon a Far Upstream Enhancer That Binds STAT5 in Human Peripheral Blood CD4+T Cells. Journal of Immunology, 2010, 185, 5074-5081.	0.4	8
33	Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. Virus Research, 2010, 153, 71-81.	1.1	29
34	Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses. Journal of Microbiology, 2009, 47, 589-99.	1.3	11
35	Structural and Mechanistic Insights into TRIM E3 Ubiquitin Ligase Activities. SSRN Electronic Journal, 0, , .	0.4	0