
Dirk Wallacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4019715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	5.8	33
2	The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal–organic framework DUT-49. Faraday Discussions, 2021, 225, 168-183.	1.6	19
3	Phonons in highly-crystalline mesoporous silicon: The absence of phonon-softening upon structuring silicon on sub-10Ânanometer length scales. Microporous and Mesoporous Materials, 2021, 312, 110814.	2.2	4
4	Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas. Chemical Engineering Journal, 2021, 405, 126955.	6.6	28
5	Direct Observation of the Xenon Physisorption Process in Mesopores by Combining <i>In Situ</i> Anomalous Small-Angle X-ray Scattering and X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 4018-4023.	2.1	4
6	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie, 2021, 133, 11841-11845.	1.6	2
7	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie - International Edition, 2021, 60, 11735-11739.	7.2	14
8	CO2 Adsorption Enhanced by Tuning the Layer Charge in a Clay Mineral. Langmuir, 2021, , .	1.6	11
9	Pore Size Gradient Effect in Monolithic Silica Mesopore Networks Revealed by In-Situ SAXS Physisorption. Langmuir, 2020, 36, 11996-12009.	1.6	10
10	CO ₂ Capture by Nickel Hydroxide Interstratified in the Nanolayered Space of a Synthetic Clay Mineral. Journal of Physical Chemistry C, 2020, 124, 26222-26231.	1.5	12
11	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	3.7	30
12	An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques. Beilstein Journal of Nanotechnology, 2020, 11, 310-322.	1.5	4
13	Specific Isotope-Responsive Breathing Transition in Flexible Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13278-13282.	6.6	47
14	Evolution of distance between ω particles in metastable β-Ti alloy determined from in-situ small angle neutron scattering. MATEC Web of Conferences, 2020, 321, 12027.	0.1	0
15	Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications, 2019, 10, 3632.	5.8	73
16	Experimental Evidence of Confined Methane Hydrate in Hydrophilic and Hydrophobic Model Carbons. Journal of Physical Chemistry C, 2019, 123, 24071-24079.	1.5	52
17	An All-in-one Sample Holder for Macromolecular X-ray Crystallography with Minimal Background Scattering. Journal of Visualized Experiments, 2019, , .	0.2	4
18	BerILL: The ultimate humidity chamber for neutron scattering. Journal of Neutron Research, 2019, 21, 65-76.	0.4	22

#	Article	IF	CITATIONS
19	Exploiting Dynamic Opening of Apertures in a Partially Fluorinated MOF for Enhancing H ₂ Desorption Temperature and Isotope Separation. Journal of the American Chemical Society, 2019, 141, 19850-19858.	6.6	60
20	Peering into the structural evolution of glass-like carbons derived from phenolic resin by combining small-angle neutron scattering with an advanced evaluation method for wide-angle X-ray scattering. Carbon, 2019, 141, 169-181.	5.4	33
21	Quantum Dynamics of H ₂ and D ₂ Confined in Hydrate Structures as a Function of Pressure and Temperature. Journal of Physical Chemistry C, 2019, 123, 1888-1903.	1.5	12
22	All-in-one sample holder for macromolecular crystallography. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e64-e64.	0.0	0
23	The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications, 2018, 9, 1573.	5.8	92
24	Upgrade project NEAT′2016†at Helmholtz Zentrum Berlin – What can be done on the medium power neutron source. Physica B: Condensed Matter, 2018, 551, 506-511.	1.3	25
25	In Situ Hydrogenation of the Zintl Phase SrGe. Inorganic Chemistry, 2017, 56, 1072-1079.	1.9	14
26	In Situ Monitoring of Unique Switching Transitions in the Pressure-Amplifying Flexible Framework Material DUT-49 by High-Pressure ¹²⁹ Xe NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 5195-5200.	1.5	41
27	Phonons in mesoporous silicon: The influence of nanostructuring on the dispersion in the Debye regime. Microporous and Mesoporous Materials, 2017, 243, 263-270.	2.2	11
28	Oxygen release from BaLnMn2O6 (Ln: Pr, Nd, Y) under reducing conditions as studied by neutron diffraction. Journal of Materials Science, 2017, 52, 6476-6485.	1.7	13
29	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie, 2017, 129, 10816-10820.	1.6	9
30	Correlating pore size and shape to local disorder in microporous carbon: A combined small angle neutron and X-ray scattering study. Carbon, 2017, 123, 440-447.	5.4	50
31	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie - International Edition, 2017, 56, 10676-10680.	7.2	72
32	A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations. Nanoscale, 2017, 9, 19086-19099.	2.8	22
33	A Laue diffractometer for ambient and non-ambient neutron structural analysis. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C135-C135.	0.0	1
34	Enhanced temperature and gas options at BESSY II beamline KMC-2. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C283-C283.	0.0	0
35	Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons. Physical Chemistry Chemical Physics, 2016, 18, 20607-20614.	1.3	73
36	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490

DIRK WALLACHER

#	Article	IF	CITATIONS
37	Gaining Insights on the H ₂ –Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chemistry of Materials, 2016, 28, 7353-7361.	3.2	43
38	Conformation-controlled hydrogen storage in the CAU-1 metal–organic framework. Physical Chemistry Chemical Physics, 2016, 18, 29258-29267.	1.3	15
39	Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mtext>-hexan Physical Review E, 2016, 93, 013102.</mml:mtext></mml:mrow></mml:math 	e <td>ext⁴⁷/mml:m</td>	ext ⁴⁷ /mml:m
40	Formation of Periodically Arranged Nanobubbles in Mesopores: Capillary Bridge Formation and Cavitation during Sorption and Solidification in an Hierarchical Porous SBA-15 Matrix. Langmuir, 2016, 32, 2928-2936.	1.6	13
41	Tuning the flexibility in MOFs by SBU functionalization. Dalton Transactions, 2016, 45, 4407-4415.	1.6	34
42	Controlled Pore Formation on Mesoporous Single Crystalline Silicon Nanowires: Threshold and Mechanisms. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	13
43	Elucidating the Sorption Mechanism of Dibromomethane in Disordered Mesoporous Silica Adsorbents. Langmuir, 2015, 31, 6332-6342.	1.6	7
44	Hydrogenation properties of Li Sr1â^'AlSi studied by quantum-chemical methods (0≤â‰⊉) and in-situ neutron powder diffraction (x=1). Journal of Solid State Chemistry, 2015, 221, 318-324.	1.4	4
45	Exceptional adsorption-induced cluster and network deformation in the flexible metal–organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Physical Chemistry Chemical Physics, 2015, 17, 17471-17479.	1.3	96
46	Characteristics of flexibility in metal-organic framework solid solutions of composition [Zn2(BME-bdc)x(DB-bdc)2â^'xdabco]n: In situ powder X-ray diffraction, in situ NMR spectroscopy, and molecular dynamics simulations. Microporous and Mesoporous Materials, 2015, 216, 64-74.	2.2	41
47	Poly(ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon, 2015, 82, 425-435.	5.4	37
48	Solid phases of spatially nanoconfined oxygen: A neutron scattering study. Journal of Chemical Physics, 2014, 140, 024705.	1.2	6
49	Coherent analysis of disordered mesoporous adsorbents using small angle X-ray scattering and physisorption experiments. Physical Chemistry Chemical Physics, 2014, 16, 6583.	1.3	25
50	In Situ Observation of Gating Phenomena in the Flexible Porous Coordination Polymer Zn ₂ (BPnDC) ₂ (bpy) (SNU-9) in a Combined Diffraction and Gas Adsorption Experiment. Inorganic Chemistry, 2014, 53, 1513-1520.	1.9	43
51	Sorption Phase of Supercritical CO ₂ in Silica Aerogel: Experiments and Mesoscale Computer Simulations. Journal of Physical Chemistry C, 2014, 118, 15525-15533.	1.5	24
52	In situ monitoring of structural changes during the adsorption on flexible porous coordination polymers by X-ray powder diffraction: Instrumentation and experimental results. Microporous and Mesoporous Materials, 2014, 188, 190-195.	2.2	58
53	Poly-NIPAM Microgels with Different Cross-Linker Densities. , 2013, , 63-76.		11
54	CO ₂ Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements. Environmental Science & Technology, 2013, 47, 205-211.	4.6	96

DIRK WALLACHER

#	Article	IF	CITATIONS
55	On the Complex Structural Picture of the Ionic Conductor Sr ₆ Ta ₂ O ₁₁ . Journal of Physical Chemistry C, 2013, 117, 9543-9549.	1.5	6
56	Small-angle X-ray scattering in droplet-based microfluidics. Lab on A Chip, 2013, 13, 1529.	3.1	39
57	Molecular dynamics of n-hexane: A quasi-elastic neutron scattering study on the bulk and spatially nanochannel-confined liquid. Journal of Chemical Physics, 2012, 136, 124505.	1.2	28
58	Deformation mechanism of nanoporous materials upon water freezing and melting. Applied Physics Letters, 2012, 101, .	1.5	11
59	Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry. Langmuir, 2012, 28, 5070-5078.	1.6	29
60	Pore Size Effects on the Sorption of Supercritical CO ₂ in Mesoporous CPG-10 Silica. Journal of Physical Chemistry C, 2012, 116, 917-922.	1.5	50
61	Distribution of functional groups in periodic mesoporous organosilica materials studied by small-angle neutron scattering with in situ adsorption of nitrogen. Beilstein Journal of Nanotechnology, 2012, 3, 428-437.	1.5	6
62	In situ neutron diffraction under high pressure—Providing an insight into working catalysts. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 673, 51-55.	0.7	17
63	Detection of Homogeneous Distribution of Functional Groups in Mesoporous Silica by Small Angle Neutron Scattering and in Situ Adsorption of Nitrogen or Water. Langmuir, 2011, 27, 5516-5522.	1.6	21
64	Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study. Journal of Alloys and Compounds, 2011, 509, 5466-5471.	2.8	5
65	Flexible and Hydrophobic Zn-Based Metal–Organic Framework. Inorganic Chemistry, 2011, 50, 8367-8374.	1.9	74
66	Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study. Microporous and Mesoporous Materials, 2010, 136, 50-58.	2.2	132
67	In situ Neutron Diffraction Study of a Methanol Synthesis Catalyst under Working Conditions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2088-2088.	0.6	0
68	Adsorption in Periodically Ordered Mesoporous Organosilica Materials Studied by in Situ Small-Angle X-ray Scattering and Small-Angle Neutron Scattering. Langmuir, 2010, 26, 6583-6592.	1.6	31
69	BH ₄ ^{â^'} Self-Diffusion in Liquid LiBH ₄ . Journal of Physical Chemistry A, 2010, 114, 10117-10121.	1.1	20
70	Formation of Crossâ€Linked Chloroperoxidase Aggregates in the Pores of Mesocellular Foams: Characterization by SANS and Catalytic Properties. ChemSusChem, 2009, 2, 161-164.	3.6	40
71	Improving the Hydrogenâ€Adsorption Properties of a Hydroxyâ€Modified MILâ€53(Al) Structural Analogue by Lithium Doping. Angewandte Chemie - International Edition, 2009, 48, 4639-4642.	7.2	202
72	Analysis of Microporosity in Ordered Mesoporous Hierarchically Structured Silica by Combining Physisorption With in Situ Small-Angle Scattering (SAXS and SANS). Langmuir, 2009, 25, 12670-12681.	1.6	51

DIRK WALLACHER

#	Article	IF	CITATIONS
73	Capillary rise of water in hydrophilic nanopores. Physical Review E, 2009, 79, 067301.	0.8	157
74	Solid-state synthesis of LiBD4 observed by in situ neutron diffraction. Physical Chemistry Chemical Physics, 2008, 10, 5859.	1.3	22
75	Melting and Freezing of Argon in a Granular Packing of Linear Mesopore Arrays. Physical Review Letters, 2008, 100, 175701.	2.9	32
76	Thermodynamic and Structural Investigations of Condensates of Small Molecules in Mesopores. Zeitschrift Fur Physikalische Chemie, 2008, 222, 257-285.	1.4	34
77	Thermodynamic and Structural Investigations of Condensates of Small Molecules in Mesopores. , 2008, , 33-61.		0
78	Pore Hierarchy in Mesoporous Silicas Evidenced by In-Situ SANS during Nitrogen Physisorption. Langmuir, 2007, 23, 4724-4727.	1.6	45
79	Neutron Diffraction Study of He Solidified in a Mesoporous Glass. Journal of Low Temperature Physics, 2005, 138, 1013-1024.	0.6	20
80	Triple Point Behavior of Ar and N2 in Mesopores. Journal of Low Temperature Physics, 2005, 140, 91-103.	0.6	13
81	Capillary sublimation of Ar in mesoporous glass. Physical Review B, 2005, 71, .	1.1	10
82	Quenching of lamellar ordering in an n -alkane embedded in nanopores. Europhysics Letters, 2004, 65, 351-357.	0.7	86
83	Capillary Condensation in Linear Mesopores of Different Shape. Physical Review Letters, 2004, 92, 195704.	2.9	153
84	How do rod-like molecules freeze and arrange in mesopores?. Journal of Physics Condensed Matter, 2003, 15, S309-S314.	0.7	6
85	Capillary condensation monitored in birefringent porous silicon layers. Journal of Applied Physics, 2003, 94, 4913.	1.1	18
86	Freezing and melting of Ar in mesopores studied by optical transmission. Physical Review B, 2003, 67, .	1.1	44