Weihua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4019558/publications.pdf

Version: 2024-02-01

41 papers 1,385

³⁹⁴⁴²¹
19
h-index

36 g-index

44 all docs

44 docs citations

44 times ranked 742 citing authors

#	Article	IF	CITATIONS
1	The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 2015, 53, 412-435.	3.7	161
2	An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis. ISA Transactions, 2019, 91, 218-234.	5.7	115
3	Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis. Journal of Sound and Vibration, 2018, 425, 53-69.	3.9	92
4	Hybrid Simulation of Dynamics for the Pantograph-Catenary System. Vehicle System Dynamics, 2002, 38, 393-414.	3.7	76
5	Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis. ISA Transactions, 2019, 90, 244-267.	5.7	74
6	Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elements in Analysis and Design, 2011, 47, 288-295.	3.2	66
7	Effect of vehicle vibration environment of high-speed train on dynamic performance of axle box bearing. Vehicle System Dynamics, 2019, 57, 543-563.	3.7	66
8	Effect of tangent track buckle on vehicle derailment. Multibody System Dynamics, 2011, 25, 1-41.	2.7	62
9	Study on dynamics of coupled systems in high-speed trains. Vehicle System Dynamics, 2013, 51, 966-1016.	3.7	58
10	Random Response Analysis of Axle-Box Bearing of a High-Speed Train Excited by Crosswinds and Track Irregularities. IEEE Transactions on Vehicular Technology, 2019, 68, 10607-10617.	6.3	57
11	A novel blind deconvolution method and its application to fault identification. Journal of Sound and Vibration, 2019, 460, 114900.	3.9	56
12	Motor car–track spatial coupled dynamics model of a high-speed train with traction transmission systems. Mechanism and Machine Theory, 2019, 137, 386-403.	4.5	53
13	Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train. Vehicle System Dynamics, 2020, 58, 1385-1406.	3.7	43
14	Blind deconvolution assisted with periodicity detection techniques and its application to bearing fault feature enhancement. Measurement: Journal of the International Measurement Confederation, 2020, 159, 107804.	5.0	37
15	An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis. Journal of Sound and Vibration, 2022, 523, 116746.	3.9	37
16	Evaluation of the coupled dynamical response of a pantographâ€"catenary system: contact force and stresses. Vehicle System Dynamics, 2006, 44, 645-658.	3.7	35
17	Pantograph and catenary system with double pantographs for high-speed trains at 350 km/h or higher. Journal of Modern Transportation, 2011, 19, 7-11.	2.5	30
18	Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: A comparative study. ISA Transactions, 2022, 127, 395-414.	5.7	24

#	Article	IF	Citations
19	Analysis of vibration and temperature on the axle box bearing of a high-speed train. Vehicle System Dynamics, 2020, 58, 1605-1628.	3.7	21
20	Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train. Vehicle System Dynamics, 2021, 59, 613-634.	3.7	21
21	An investigation into structural failures of Chinese high-speed trains. Engineering Failure Analysis, 2006, 13, 427-441.	4.0	17
22	<tpl-pcrun> Statement of methods. Vehicle System Dynamics, 2015, 53, 380-391.</tpl-pcrun>	3.7	17
23	Effect of track irregularities of high-speed railways on the thermal characteristics of the traction motor bearing. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 22-34.	2.0	15
24	Effect of the strip spacing on the aerodynamic performance of a high-speed double-strip pantograph. Vehicle System Dynamics, 2022, 60, 3358-3374.	3.7	15
25	Influence of pantograph fixing position on aerodynamic characteristics of high-speed trains. Journal of Modern Transportation, 2017, 25, 34-39.	2.5	14
26	Effect of the nonlinear displacement-dependent characteristics of a hydraulic damper on high-speed rail pantograph dynamics. Nonlinear Dynamics, 2019, 95, 3439-3464.	5.2	12
27	An adaptive variable-length cable element method for form-finding analysis of railway catenaries in an absolute nodal coordinate formulation. European Journal of Mechanics, A/Solids, 2022, 93, 104545.	3.7	12
28	Wheel wear analysis of motor and unpowered car of a high-speed train. Wear, 2020, 444-445, 203136.	3.1	11
29	Dynamic characteristics of a high-speed train gearbox in the vehicle–track coupled system excited by wheel defects. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 1210-1226.	2.0	11
30	A real-time impact detection and diagnosis system of catenary using measured strains by fibre Bragg grating sensors. Vehicle System Dynamics, 2019, 57, 1924-1946.	3.7	10
31	A New Three-Dimensional Moving Timoshenko Beam Element for Moving Load Problem Analysis. Journal of Vibration and Acoustics, Transactions of the ASME, 2020, 142, .	1.6	10
32	A new nonlinear displacement-dependent parametric model of a high-speed rail pantograph hydraulic damper. Vehicle System Dynamics, 2020, 58, 272-289.	3.7	9
33	Stochastic failure process of railway vehicle dampers and the effects on suspension and vehicle dynamics. Vehicle System Dynamics, 2021, 59, 703-718.	3.7	9
34	Improved multiscale weighted-dispersion entropy and its application in fault diagnosis of train bearing. Measurement Science and Technology, 2021, 32, 075002.	2.6	7
35	Investigation on Monitoring System for Pantograph and Catenary Based on Condition-Based Recognition of Pantograph. Shock and Vibration, 2019, 2019, 1-10.	0.6	5
36	Experimental research into the low-temperature characteristics of a hydraulic damper and the effect on the dynamics of the pantograph of a high-speed train running in extreme cold weather conditions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 896-907.	2.0	5

3

#	Article	IF	CITATIONS
37	Study on the influence of lateral and local rail deformation on the train–track interaction dynamics. Vehicle System Dynamics, 2022, 60, 670-698.	3.7	5
38	An innovative stepwise time-domain fatigue methodology to integrate damage tolerance into system dynamics. Vehicle System Dynamics, 2023, 61, 550-572.	3.7	5
39	Lateral-vertical coupled active suspension on railway vehicle and optimal control methods. Vehicle System Dynamics, 2022, 60, 258-280.	3.7	4
40	Crowd simulation using DC model and density information. Multimedia Tools and Applications, 2016, 75, 5981-5998.	3.9	3
41	Effect of unbalanced magnetic pull on the thermal characteristics of traction motor bearing. Industrial Lubrication and Tribology, 2021, 73, 1187-1197.	1.3	2