
JesÃ^os Joglar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4019452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemoenzymatic Production of Enantiocomplementary 2â€Substituted 3â€Hydroxycarboxylic Acids from l â€Î±â€Amino Acids. Advanced Synthesis and Catalysis, 2021, 363, 2866-2876.	4.3	7
2	Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition–Transamination Reactions. ACS Catalysis, 2021, 11, 4660-4669.	11.2	25
3	Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. Journal of the American Chemical Society, 2020, 142, 19754-19762.	13.7	10
4	Chemoenzymatic Hydroxymethylation of Carboxylic Acids by Tandem Stereodivergent Biocatalytic Aldol Reaction and Chemical Decarboxylation. ACS Catalysis, 2019, 9, 7568-7577.	11.2	15
5	Aldolaseâ€Catalyzed Asymmetric Synthesis of Nâ€Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2673-2687.	4.3	19
6	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie, 2018, 130, 3645-3649.	2.0	11
7	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie - International Edition, 2018, 57, 3583-3587.	13.8	22
8	Titelbild: Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3581-3581.	2.0	0
9	Evaluation of markers out of the steroid profile for the screening of testosterone misuse. Part II: Intramuscular administration. Drug Testing and Analysis, 2018, 10, 849-859.	2.6	12
10	Evaluation of markers out of the steroid profile for the screening of testosterone misuse. Part I: Transdermal administration. Drug Testing and Analysis, 2018, 10, 821-831.	2.6	16
11	Biocatalytic Aldol Addition of Simple Aliphatic Nucleophiles to Hydroxyaldehydes. ACS Catalysis, 2018, 8, 8804-8809.	11.2	25
12	Evaluation of two glucuronides resistant to enzymatic hydrolysis as markers of testosterone oral administration. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 212-218.	2.5	25
13	LCâ€MS/MS detection of unaltered glucuronoconjugated metabolites of metandienone. Drug Testing and Analysis, 2017, 9, 534-544.	2.6	8
14	Combining Aldolases and Transaminases for the Synthesis of 2-Amino-4-hydroxybutanoic Acid. ACS Catalysis, 2017, 7, 1707-1711.	11.2	60
15	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie, 2017, 129, 5388-5391.	2.0	7
16	2â€Ketoâ€3â€Deoxyâ€ <scp>l</scp> â€Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2090-2100.	4.3	20
17	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie - International Edition, 2017, 56, 5304-5307.	13.8	13
18	Ionization and collision induced dissociation of steroid bisglucuronides. Journal of Mass Spectrometry, 2017, 52, 759-769.	1.6	5

JesÃ⁰s Joglar

#	Article	IF	CITATIONS
19	Detection and characterization of clostebol sulfate metabolites in Caucasian population. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1022, 54-63.	2.3	27
20	Structureâ€Guided Engineering of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic Aldol Additions. Advanced Synthesis and Catalysis, 2015, 357, 1787-1807.	4.3	20
21	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Ĩ±â€Amino Acids. Angewandte Chemie, 2015, 127, 3056-3060.	2.0	12
22	Expedient Synthesis of C â€Aryl Carbohydrates by Consecutive Biocatalytic Benzoin and Aldol Reactions. Chemistry - A European Journal, 2015, 21, 3335-3346.	3.3	13
23	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Ĩ±â€Amino Acids. Angewandte Chemie - International Edition, 2015, 54, 3013	-30187.	35
24	Untargeted Metabolomics in Doping Control: Detection of New Markers of Testosterone Misuse by Ultrahigh Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Analytical Chemistry, 2015, 87, 8373-8380.	6.5	39
25	Screening for anabolic steroids in sports: Analytical strategy based on the detection of phase I and phase II intact urinary metabolites by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2015, 1389, 65-75.	3.7	37
26	Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nature Chemistry, 2015, 7, 724-729.	13.6	63
27	Treatment with a novel oleic-acid–dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats. DMM Disease Models and Mechanisms, 2015, 8, 1213-1225.	2.4	16
28	Ultra high performance liquid chromatography tandem mass spectrometric detection of glucuronides resistant to enzymatic hydrolysis: Implications to doping control analysis. Analytica Chimica Acta, 2015, 895, 35-44.	5.4	17
29	<scp>d</scp> -Fagomine attenuates metabolic alterations induced by a high-energy-dense diet in rats. Food and Function, 2015, 6, 2614-2619.	4.6	16
30	Synthesis and characterization of 6βâ€hydroxyandrosterone and 6βâ€hydroxyetiocholanolone conjugated with glucuronic acid. Drug Testing and Analysis, 2015, 7, 247-252.	2.6	10
31	Engineering the Donor Selectivity of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Biocatalytic Asymmetric Crossâ€Aldol Additions of Glycolaldehyde. Chemistry - A European Journal, 2014, 20, 12572-12583.	3.3	35
32	Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Advanced Synthesis and Catalysis, 2014, 356, 3007-3024.	4.3	31
33	Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Organic Letters, 2014, 16, 1422-1425.	4.6	17
34	Casuarine Stereoisomers from Achiral Substrates: Chemoenzymatic Synthesis and Inhibitory Properties. Journal of Organic Chemistry, 2014, 79, 5386-5389.	3.2	16
35	Detection, synthesis and characterization of metabolites of steroid hormones conjugated with cysteine. Steroids, 2013, 78, 327-336.	1.8	37
36	Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacological Research, 2013, 77, 47-56.	7.1	54

Jesús Joglar

#	Article	IF	CITATIONS
37	Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Organic and Biomolecular Chemistry, 2013, 11, 2005.	2.8	25
38	Unsaturated Fatty Alcohol Derivatives of Olive Oil Phenolic Compounds with Potential Low-Density Lipoprotein (LDL) Antioxidant and Antiobesity Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 1067-1074.	5.2	17
39	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	2.8	30
40	In situ aldehyde generation for aldol addition reactions catalyzed by d-fructose-6-phosphate aldolase. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 102-107.	1.8	15
41	Effects of MDMA (ecstasy) and two of its metabolites on rat embryos in vitro. Reproductive Toxicology, 2012, 34, 57-65.	2.9	3
42	Carbon–Carbon Bond-Forming Enzymes for the Synthesis of Non-natural Amino Acids. Methods in Molecular Biology, 2012, 794, 73-85.	0.9	0
43	Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer. Organic and Biomolecular Chemistry, 2011, 9, 8430.	2.8	26
44	Structure-guided redesign of d-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation. Chemical Communications, 2011, 47, 5762.	4.1	41
45	Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere, 2011, 84, 1535-1541.	8.2	45
46	Redesign of the Phosphate Binding Site of <scp>L</scp> â€Rhamnulose―1â€Phosphate Aldolase towards a Dihydroxyacetone Dependent Aldolase. Advanced Synthesis and Catalysis, 2011, 353, 89-99.	4.3	38
47	Direct analysis of glucuronidated metabolites of main olive oil phenols in human urine after dietary consumption of virgin olive oil. Food Chemistry, 2011, 126, 306-314.	8.2	42
48	Cytotoxicity and enzymatic activity inhibition in cell lines treated with novel iminosugar derivatives. Glycoconjugate Journal, 2010, 27, 277-285.	2.7	21
49	Synthesis of Fatty Acid Amides of Catechol Metabolites that Exhibit Antiobesity Properties. ChemMedChem, 2010, 5, 1781-1787.	3.2	7
50	A Mutant <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase (Ala129Ser) with Improved Affinity towards Dihydroxyacetone for the Synthesis of Polyhydroxylated Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1039-1046.	4.3	90
51	Structureâ€Guided Minimalist Redesign of the <scp>L</scp> â€Fuculoseâ€1â€Phosphate Aldolase Active Site: Expedient Synthesis of Novel Polyhydroxylated Pyrrolizidines and their Inhibitory Properties Against Glycosidases and Intestinal Disaccharidases. Chemistry - A European Journal, 2010, 16, 10691-10706.	3.3	39
52	Matrix effects on the bioavailability of resveratrol in humans. Food Chemistry, 2010, 120, 1123-1130.	8.2	71
53	Antioxidant Activities of Hydroxytyrosol Main Metabolites Do Not Contribute to Beneficial Health Effects after Olive Oil Ingestion. Drug Metabolism and Disposition, 2010, 38, 1417-1421.	3.3	51
54	Neurotoxic Thioether Adducts of 3,4-Methylenedioxymethamphetamine Identified in Human Urine After Ecstasy Ingestion. Drug Metabolism and Disposition, 2009, 37, 1448-1455.	3.3	30

JesÃ⁰s Joglar

#	Article	IF	CITATIONS
55	<scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase in Organic Synthesis: Cascade Chemicalâ€Enzymatic Preparation of Sugarâ€Related Polyhydroxylated Compounds. Chemistry - A European Journal, 2009, 15, 3808-3816.	3.3	104
56	Dihydroxyacetone Phosphate Aldolase Catalyzed Synthesis of Structurally Diverse Polyhydroxylated Pyrrolidine Derivatives and Evaluation of their Glycosidase Inhibitory Properties. Chemistry - A European Journal, 2009, 15, 7310-7328.	3.3	49
57	Asymmetric Self―and Crossâ€Aldol Reactions of Glycolaldehyde Catalyzed by <scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase. Angewandte Chemie - International Edition, 2009, 48, 5521-5525.	13.8	116
58	Serine Hydroxymethyl Transferase from <i>Streptococcus thermophilus</i> and <scp>L</scp> â€Threonine Aldolase from <i>Escherichia coli</i> as Stereocomplementary Biocatalysts for the Synthesis of βâ€Hydroxyâ€Î±,ï‰â€diamino Acid Derivatives. Chemistry - A European Journal, 2008, 14, 4647-4656.	3.3	53
59	Serotonergic Neurotoxic Thioether Metabolites of 3,4-Methylenedioxymethamphetamine (MDMA,) Tj ETQq1 1 0.7 Toxicology, 2008, 21, 2272-2279.	784314 rg 3.3	gBT /Overloc 14
60	Chemoenzymatic Synthesis and Inhibitory Activities of Hyacinthacines A ₁ and A ₂ Stereoisomers. Advanced Synthesis and Catalysis, 2007, 349, 1661-1666.	4.3	57
61	Influence of N-amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron, 2006, 62, 2648-2656.	1.9	25
62	Fructose-6-phosphate Aldolase in Organic Synthesis:  Preparation ofd-Fagomine,N-Alkylated Derivatives, and Preliminary Biological Assays. Organic Letters, 2006, 8, 6067-6070.	4.6	136
63	Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radical Biology and Medicine, 2006, 40, 608-616.	2.9	245
64	Biocatalyzed Synthesis and Structural Characterization of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol, and 3-(4′-Hydroxyphenyl)propanol. Advanced Synthesis and Catalysis, 2006, 348, 2155-2162.	4.3	35
65	Synthesis and evaluation of diverse analogs of amygdalin as potential peptidomimetics of peptide T. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1493-1496.	2.2	10
66	Aldol Additions of Dihydroxyacetone Phosphate toN-Cbz-Amino Aldehydes Catalyzed byL-Fuculose-1-Phosphate Aldolase in Emulsion Systems: Inversion of Stereoselectivity as a Function of the Acceptor Aldehyde. Chemistry - A European Journal, 2005, 11, 1392-1401.	3.3	50
67	Stereochemical analysis of 3,4-methylenedioxymethamphetamine and its main metabolites in human samples including the catechol-type metabolite (3,4-dihydroxymethamphetamine). Drug Metabolism and Disposition, 2004, 32, 1001-7.	3.3	46
68	Synthesis of the major metabolites of Paroxetine. Bioorganic Chemistry, 2003, 31, 248-258.	4.1	12
69	Quantitative determination of paroxetine and its 4-hydroxy-3-methoxy metabolite in plasma by high-performance liquid chromatography/electrospray ion trap mass spectrometry: application to pharmacokinetic studies. Rapid Communications in Mass Spectrometry, 2003, 17, 1455-1461.	1.5	28
70	Stereochemical analysis of 3,4-methylenedioxymethamphetamine and its main metabolites by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 330-336.	1.5	34
71	Enzymatic Desaturation of Fatty Acids: Δ11Desaturase Activity on Cyclopropane Acid Probes. Journal of Organic Chemistry, 2003, 68, 2820-2829.	3.2	18
72	Stereoselective Aldol Additions Catalyzed by Dihydroxyacetone Phosphate-Dependent Aldolases in Emulsion Systems: Preparation and Structural Characterization of Linear and Cyclic Iminopolyols from Aminoaldehydes. Chemistry - A European Journal, 2003, 9, 4887-4899.	3.3	88

JesÃ⁰s Joglar

#	Article	IF	CITATIONS
73	Determination of MDMA and its Metabolites in Blood and Urine by Gas Chromatography-Mass Spectrometry and Analysis of Enantiomers by Capillary Electrophoresis. Journal of Analytical Toxicology, 2002, 26, 157-165.	2.8	98
74	Synthesis and capillary electrophoretic analysis of enantiomerically enriched reference standards of MDMA and its main metabolites. Bioorganic and Medicinal Chemistry, 2002, 10, 1085-1092.	3.0	29
75	High-performance liquid chromatography with electrochemical detection applied to the analysis of 3,4-dihydroxymethamphetamine in human plasma and urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 769, 313-321.	2.3	17
76	3,4-Dihydroxymethamphetamine (HHMA). A Major in Vivo 3,4-methylenedioxymethamphetamine (MDMA) Metabolite in Humans. Chemical Research in Toxicology, 2001, 14, 1203-1208.	3.3	89
77	Stereoselective Syntheses of Allylic Amines Through Reduction of 1-Azadiene Intermediates. Tetrahedron, 2000, 56, 8179-8187.	1.9	8
78	Trapping of Cyclopropenyl Radicals by 5,5-Dimethyl-1-pyrroline-N-oxide. Journal of Organic Chemistry, 1999, 64, 5096-5099.	3.2	10
79	Unexpected formation of N-(2-cyclopropenyl)phthalimides in the photosensitized decarboxylation of N-(2-cyclopropenylcarbonyloxy)phthalimides. Tetrahedron Letters, 1998, 39, 1079-1082.	1.4	8
80	Solid phase synthesis of cyclopropenes. Tetrahedron Letters, 1998, 39, 9819-9822.	1.4	17
81	Dielsâ~'Alder Reactions of 2-Azabutadienes with Aldehydes:Â Ab Initio and Density Functional Theoretical Study of the Reaction Mechanism, Regioselectivity, Acid Catalysis, and Stereoselectivityâ€. Journal of Organic Chemistry, 1997, 62, 3919-3926.	3.2	28
82	Synthesis and NMR configurational study of imidazo[2,1-b]thiazoles from 1H-1,4-diazepine-7(6H)-thiones. Tetrahedron, 1993, 49, 6619-6626.	1.9	4
83	An application of the evans-prasad 1,3-syn diol synthesis to a stereospecific synthesis of the C10-C27 segment of rapamycin. Tetrahedron Letters, 1993, 34, 3993-3996.	1.4	18
84	Synthetic studies toward rapamycin: a solution to a problem in chirality merger through use of the Ireland reaction. Journal of Organic Chemistry, 1991, 56, 5826-5834.	3.2	51
85	Application of the Ibuka-Yamamoto reaction to a problem in stereochemical communication: a strategy for the stereospecific synthesis and stabilization of the triene substructure of rapamycin through sulfone substitution. Journal of Organic Chemistry, 1991, 56, 5834-5845.	3.2	88
86	Synthesis of 1,3-Amino Alcohols from 2-Aza-1,3-dienes by Reduction of 5,6-Dihydro-2H-1,3-oxazines. Synthesis, 1991, 1991, 387-393.	2.3	10
87	Reduction of 5,6-dihydro-2H-1,3-oxazines. A simple approach to 1,3-aminoalcohols from 2-aza-1,3-dienes. Tetrahedron Letters, 1989, 30, 2001-2004.	1.4	7
88	Reaction of 3-amino-2-alkenimines with alkali metals: unexpected synthesis of substituted 4-(arylamino)quinolines. Journal of Organic Chemistry, 1989, 54, 2596-2598.	3.2	10
89	A simple stereoselective synthesis of primary allylic amines from 4-amino-1-azadienes. Journal of the Chemical Society Chemical Communications, 1989, , 1132.	2.0	13
90	A simple regiospecific synthesis of substituted pyridines from 2-aza-1,3-dienes. Journal of Organic Chemistry, 1988, 53, 5960-5963.	3.2	17

#	Article	IF	CITATIONS
91	Silylation of 2-Aza-1,3-dienes. The first example of a thermally stable N-trimethyl-silyldivinylamine. Journal of the Chemical Society Chemical Communications, 1986, , 361.	2.0	8
	Proparation and reactivity of 28 (Aza8) 38 (hutadianes: A Dials8 (Alder route to 5 68 (dihudro8 (2 xi) H/lix 8)	3â€ovazin	0

Preparation and reactivity of $2\hat{a}\in Aza\hat{a}\in 1,3\hat{a}\in butadienes$: A Diels $\hat{a}\in Alder$ route to $5,6\hat{a}\in dihydro\hat{a}\in 2 <i>H</i><math>\hat{a}\in 1,3\hat{a}\in oxazine$ derivatives. Chemische Berichte, 1985, 118, 3652-3663.

Novel Strategies in Aldolase-Catalyzed Synthesis of Iminosugars. , 0, , 299-311.