Tatsushi Igaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401937/publications.pdf

Version: 2024-02-01

46 papers

3,163 citations

236912 25 h-index 254170 43 g-index

48 all docs 48 docs citations

48 times ranked 2509 citing authors

#	Article	IF	CITATIONS
1	Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO Journal, 2002, 21, 3009-3018.	7.8	406
2	Loss of Cell Polarity Drives Tumor Growth and Invasion through JNK Activation in Drosophila. Current Biology, 2006, 16, 1139-1146.	3.9	332
3	Intrinsic Tumor Suppression and Epithelial Maintenance by Endocytic Activation of Eiger/TNF Signaling in Drosophila. Developmental Cell, 2009, 16, 458-465.	7.0	252
4	Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2721-2726.	7.1	184
5	Elimination of Oncogenic Neighbors by JNK-Mediated Engulfment in Drosophila. Developmental Cell, 2011, 20, 315-328.	7.0	181
6	Wengen, a Member of the Drosophila Tumor Necrosis Factor Receptor Superfamily, Is Required for Eiger Signaling. Journal of Biological Chemistry, 2002, 277, 28372-28375.	3.4	168
7	Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature, 2012, 490, 547-551.	27.8	168
8	Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1021-1028.	4.9	132
9	The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature, 2017, 542, 246-250.	27.8	117
10	Tumor Suppressor CYLD Regulates JNK-Induced Cell Death in Drosophila. Developmental Cell, 2007, 13, 446-454.	7.0	102
11	Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Developmental Cell, 2018, 44, 284-296.	7.0	88
12	Slit-Robo Repulsive Signaling Extrudes Tumorigenic Cells from Epithelia. Developmental Cell, 2016, 39, 683-695.	7.0	79
13	The Drosophila TNF ortholog Eiger: Emerging physiological roles and evolution of the TNF system. Seminars in Immunology, 2014, 26, 267-274.	5.6	77
14	Src controls tumorigenesis via JNKâ€dependent regulation of the Hippo pathway in <i>Drosophila</i> EMBO Reports, 2013, 14, 65-72.	4.5	71
15	Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila. Nature Communications, 2014, 5, 5264.	12.8	64
16	Cell Competition Is Driven by Autophagy. Developmental Cell, 2019, 51, 99-112.e4.	7.0	63
17	JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Developmental Biology, 2015, 403, 162-171.	2.0	58
18	Cell competition: Emerging mechanisms to eliminate neighbors. Development Growth and Differentiation, 2018, 60, 522-530.	1.5	57

#	Article	IF	Citations
19	Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology. Current Biology, 2018, 28, 2115-2128.e5.	3.9	50
20	Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Developmental Cell, 2020, 53, 379-389.e5.	7. O	47
21	Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18977-18982.	7.1	46
22	Deciphering tumor-suppressor signaling in flies: Genetic link between Scribble/Dlg/Lgl and the Hippo pathways. Journal of Genetics and Genomics, 2011, 38, 461-470.	3.9	44
23	Drosophila As a Cancer Model. Advances in Experimental Medicine and Biology, 2018, 1076, 173-194.	1.6	44
24	Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila. Current Biology, 2018, 28, 1756-1767.e6.	3.9	42
25	Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochemical and Biophysical Research Communications, 2007, 356, 993-997.	2.1	39
26	Nonâ€autonomous overgrowth by oncogenic niche cells: Cellular cooperation and competition in tumorigenesis. Cancer Science, 2015, 106, 1651-1658.	3.9	29
27	Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in Drosophila. Developmental Biology, 2014, 395, 19-28.	2.0	28
28	Mechanism of tumorâ€suppressive cell competition in flies. Cancer Science, 2020, 111, 3409-3415.	3.9	22
29	Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α. PLoS Genetics, 2021, 17, e1009958.	3.5	22
30	Dissecting cellular senescence and SASP in Drosophila. Inflammation and Regeneration, 2016, 36, 25.	3.7	19
31	JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila. Oncogene, 2018, 37, 3088-3097.	5.9	19
32	Mathematical model for cell competition: Predator–prey interactions at the interface between two groups of cells in monolayer tissue. Journal of Theoretical Biology, 2016, 404, 40-50.	1.7	16
33	Epithelial cell-turnover ensures robust coordination of tissue growth in Drosophila ribosomal protein mutants. PLoS Genetics, 2021, 17, e1009300.	3.5	16
34	Dissecting tumour heterogeneity in flies: genetic basis of interclonal oncogenic cooperation. Journal of Biochemistry, 2014, 156, 129-136.	1.7	14
35	Wingless signaling regulates winner/loser status in <i>Minute</i> cell competition. Genes To Cells, 2018, 23, 234-240.	1.2	11
36	JNK-mediated Slit-Robo signaling facilitates epithelial wound repair by extruding dying cells. Scientific Reports, 2019, 9, 19549.	3.3	10

#	Article	IF	CITATIONS
37	Interaction between Ras and Src clones causes interdependent tumor malignancy via Notch signaling in Drosophila. Developmental Cell, 2021, 56, 2223-2236.e5.	7.0	10
38	Eiger and Wengen: The Drosophila Orthologs of TNF/TNFR. Advances in Experimental Medicine and Biology, 2011, 691, 45-50.	1.6	9
39	Yorkie drives supercompetition by non-autonomous induction of autophagy via bantam microRNA in Drosophila. Current Biology, 2022, 32, 1064-1076.e4.	3.9	8
40	Yorkie drives Ras-induced tumor progression by microRNA-mediated inhibition of cellular senescence. Science Signaling, 2021, 14 , .	3.6	6
41	Induction and Detection of Oncogene-Induced Cellular Senescence in Drosophila. Methods in Molecular Biology, 2017, 1534, 211-218.	0.9	5
42	Yorkie ensures robust tissue growth in Drosophila ribosomal protein mutants. Development (Cambridge), 2021, 148, .	2.5	4
43	JNK and Yorkie drive tumor malignancy by inducing L-amino acid transporter 1 in Drosophila. PLoS Genetics, 2021, 17, e1009893.	3.5	4
44	1SCP-01 Cell competition that regulates epithelial maintenance in Drosophila(1SCP Challenges to in) Tj ETQq0 Butsuri, 2013, 53, S88.	0 0 rgBT /0 0.1	Overlock 10 Tf 0
45	Breaking Down Neighbors to Fuel Tumorigenesis. Developmental Cell, 2017, 40, 219-220.	7.0	O
46	Non-autonomous Tumor Progression by Oncogenic Inflammation., 2016,, 211-222.		0