
Jonathan C Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018834/publications.pdf Version: 2024-02-01

ΙΟΝΑΤΗΛΝ C ΤΛΝ

#	Article	IF	CITATIONS
1	The Formation of Massive Stars from Turbulent Cores. Astrophysical Journal, 2003, 585, 850-871.	4.5	791
2	Slow Star Formation in Dense Gas: Evidence and Implications. Astrophysical Journal, 2007, 654, 304-315.	4.5	521
3	Massive star formation in 100,000 years from turbulent and pressurized molecular clouds. Nature, 2002, 416, 59-61.	27.8	296
4	STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS. Astrophysical Journal, 2009, 700, 358-375.	4.5	235
5	The Formation of the First Stars. II. Radiative Feedback Processes and Implications for the Initial Mass Function. Astrophysical Journal, 2008, 681, 771-797.	4.5	211
6	Equilibrium Star Cluster Formation. Astrophysical Journal, 2006, 641, L121-L124.	4.5	190
7	The Formation of the First Stars. I. Mass Infall Rates, Accretion Disk Structure, and Protostellar Evolution. Astrophysical Journal, 2004, 603, 383-400.	4.5	179
8	INSIDE-OUT PLANET FORMATION. Astrophysical Journal, 2014, 780, 53.	4.5	175
9	Star Formation Rates in Disk Galaxies and Circumnuclear Starbursts from Cloud Collisions. Astrophysical Journal, 2000, 536, 173-184.	4.5	174
10	Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores. Astronomy and Astrophysics, 2011, 528, A72.	5.1	156
11	MID-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS. II. THE STRUCTURE OF MASSIVE STARLESS CORES AND CLUMPS. Astrophysical Journal, 2012, 754, 5.	4.5	135
12	MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS. Astrophysical Journal, 2015, 799, 74.	4.5	133
13	High-dynamic-range extinction mapping of infrared dark clouds. Astronomy and Astrophysics, 2013, 549, A53.	5.1	114
14	THE DYNAMICS OF MASSIVE STARLESS CORES WITH ALMA. Astrophysical Journal, 2013, 779, 96.	4.5	113
15	Parsec-scale SiO emission in an infrared dark cloud. Monthly Notices of the Royal Astronomical Society, 2010, 406, 187-196.	4.4	108
16	MID-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS: PROBING THE INITIAL CONDITIONS FOR MASSIVE STARS AND STAR CLUSTERS. Astrophysical Journal, 2009, 696, 484-497.	4.5	106
17	Deuteration as an evolutionary tracer in massive-star formation. Astronomy and Astrophysics, 2011, 529, L7.	5.1	99
18	The dynamical properties of dense filaments in the infrared dark cloud G035.39â^'00.33â~ Monthly Notices of the Royal Astronomical Society, 2014, 440, 2860-2881.	4.4	99

Jonathan C Tan

#	Article	IF	CITATIONS
19	IN-SYNC. II. VIRIAL STARS FROM SUBVIRIAL CORES—THE VELOCITY DISPERSION OF EMBEDDED PRE-MAIN-SEQUENCE STARS IN NGC 1333. Astrophysical Journal, 2015, 799, 136.	4.5	88
20	IN-SYNC. IV. THE YOUNG STELLAR POPULATION IN THE ORION A MOLECULAR CLOUD. Astrophysical Journal, 2016, 818, 59.	4.5	82
21	IN-SYNC I: HOMOGENEOUS STELLAR PARAMETERS FROM HIGH-RESOLUTION APOGEE SPECTRA FOR THOUSANDS OF PRE-MAIN SEQUENCE STARS. Astrophysical Journal, 2014, 794, 125.	4.5	77
22	Complex, quiescent kinematics in a highly filamentary infrared dark clouda Monthly Notices of the Royal Astronomical Society, 2013, 428, 3425-3442.	4.4	76
23	MAPPING LARGE-SCALE CO DEPLETION IN A FILAMENTARY INFRARED DARK CLOUD. Astrophysical Journal, 2011, 738, 11.	4.5	70
24	The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 Years Ago from the 1 Orionis C System. Astrophysical Journal, 2004, 607, L47-L50.	4.5	62
25	THE STRUCTURE, DYNAMICS, AND STAR FORMATION RATE OF THE ORION NEBULA CLUSTER. Astrophysical Journal, 2014, 795, 55.	4.5	60
26	THE DEUTERIUM FRACTIONATION TIMESCALE IN DENSE CLOUD CORES: A PARAMETER SPACE EXPLORATION. Astrophysical Journal, 2015, 804, 98.	4.5	60
27	VULCAN PLANETS: INSIDE-OUT FORMATION OF THE INNERMOST SUPER-EARTHS. Astrophysical Journal Letters, 2015, 798, L32.	8.3	59
28	THE GALACTIC CENSUS OF HIGH- AND MEDIUM-MASS PROTOSTARS. I. CATALOGS AND FIRST RESULTS FROM MOPRA HCO ⁺ MAPS. Astrophysical Journal, Supplement Series, 2011, 196, 12.	7.7	57
29	AN ORDERED BIPOLAR OUTFLOW FROM A MASSIVE EARLY-STAGE CORE. Astrophysical Journal Letters, 2016, 821, L3.	8.3	57
30	THE IMPACT OF FEEDBACK DURING MASSIVE STAR FORMATION BY CORE ACCRETION. Astrophysical Journal, 2017, 835, 32.	4.5	57
31	GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations. Astrophysical Journal, 2017, 835, 137.	4.5	57
32	Deuteration and evolution in the massive star formation process. Astronomy and Astrophysics, 2015, 575, A87.	5.1	53
33	GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation. Astrophysical Journal, 2017, 841, 88.	4.5	53
34	ALMA survey of massive cluster progenitors from ATLASGAL. Astronomy and Astrophysics, 2017, 600, L10.	5.1	53
35	OUTFLOW-CONFINED H ii REGIONS. I. FIRST SIGNPOSTS OF MASSIVE STAR FORMATION. Astrophysical Journal, 2016, 818, 52.	4.5	50
36	INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY. Astrophysical Journal, 2016, 816, 19.	4.5	49

Jonathan C Tan

#	Article	IF	CITATIONS
37	IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE. Astrophysical Journal, 2015, 807, 27.	4.5	48
38	The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results. Astrophysical Journal, 2017, 843, 33.	4.5	47
39	The Hi-GAL compact source catalogue – II. The 360° catalogue of clump physical properties. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2742-2766.	4.4	45
40	Gas kinematics and excitation in the filamentary IRDC G035.39-00.33. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1996-2013.	4.4	44
41	GMC Collisions as Triggers of Star Formation. V. Observational Signatures. Astrophysical Journal, 2017, 850, 23.	4.5	43
42	A HUNT FOR MASSIVE STARLESS CORES. Astrophysical Journal, 2017, 834, 193.	4.5	42
43	The Core Mass Function in the Massive Protocluster G286.21+0.17 Revealed by ALMA. Astrophysical Journal, 2018, 853, 160.	4.5	42
44	RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. I. DEPENDENCE ON BASIC CORE PROPERTIES. Astrophysical Journal, 2011, 733, 55.	4.5	41
45	RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. III. THE EVOLUTIONARY SEQUENCE. Astrophysical Journal, 2014, 788, 166.	4.5	40
46	Unveiling the early-stage anatomy of a protocluster hub with ALMA. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L31-L35.	3.3	40
47	IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud. Astrophysical Journal, 2017, 845, 105.	4.5	40
48	Radiation Transfer of Models of Massive Star Formation. IV. The Model Grid and Spectral Energy Distribution Fitting. Astrophysical Journal, 2018, 853, 18.	4.5	39
49	Search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS). Astronomy and Astrophysics, 2018, 617, A89.	5.1	39
50	The Core Mass Function across Galactic Environments. II. Infrared Dark Cloud Clumps. Astrophysical Journal, 2018, 862, 105.	4.5	38
51	THE GALACTIC CENSUS OF HIGH- AND MEDIUM-MASS PROTOSTARS. II. LUMINOSITIES AND EVOLUTIONARY STATES OF A COMPLETE SAMPLE OF DENSE GAS CLUMPS. Astrophysical Journal, 2013, 779, 79.	4.5	37
52	GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS. Astrophysical Journal, 2015, 811, 56.	4.5	37
53	THE DEUTERIUM FRACTION IN MASSIVE STARLESS CORES AND DYNAMICAL IMPLICATIONS. Astrophysical Journal, 2016, 821, 94.	4.5	37
54	Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales. Astrophysical Journal, 2018, 857, 20.	4.5	37

#	Article	IF	CITATIONS
55	THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER. Astrophysical Journal Letters, 2014, 782, L30.	8.3	36
56	Widespread Molecular Outflows in the Infrared Dark Cloud G28.37+0.07: Indications of Orthogonal Outflow-filament Alignment. Astrophysical Journal, 2019, 874, 104.	4.5	34
57	THE DYNAMICAL STATE OF FILAMENTARY INFRARED DARK CLOUDS. Astrophysical Journal, 2011, 730, 44.	4.5	32
58	Magnetically regulated fragmentation of a massive, dense, and turbulent clump. Astronomy and Astrophysics, 2016, 593, L14.	5.1	31
59	GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION. Astrophysical Journal, 2012, 754, 152.	4.5	30
60	A VIRIALIZED FILAMENTARY INFRARED DARK CLOUD. Astrophysical Journal Letters, 2012, 756, L13.	8.3	30
61	A MASSIVE PROTOSTAR FORMING BY ORDERED COLLAPSE OF A DENSE, MASSIVE CORE. Astrophysical Journal, 2013, 767, 58.	4.5	30
62	RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. II. EFFECTS OF THE OUTFLOW. Astrophysical Journal, 2013, 766, 86.	4.5	29
63	THE GIANT MOLECULAR CLOUD ENVIRONMENTS OF INFRARED DARK CLOUDS. Astrophysical Journal, 2015, 809, 154.	4.5	29
64	Photodissociation region diagnostics across galactic environments. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2701-2732.	4.4	29
65	New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann–Low Nebula*. Astrophysical Journal Letters, 2017, 838, L3.	8.3	27
66	KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. I. THE UNMAGNETIZED AND ZERO-FEEDBACK LIMIT. Astrophysical Journal, 2013, 764, 36.	4.5	26
67	THE DISTRIBUTION OF MASS SURFACE DENSITIES IN A HIGH-MASS PROTOCLUSTER. Astrophysical Journal Letters, 2016, 829, L19.	8.3	26
68	Salt, Hot Water, and Silicon Compounds Tracing Massive Twin Disks. Astrophysical Journal Letters, 2020, 900, L2.	8.3	26
69	A TEST OF STAR FORMATION LAWS IN DISK GALAXIES. Astrophysical Journal Letters, 2010, 710, L88-L91.	8.3	24
70	Widespread deuteration across the IRDC G035.39â^'00.33. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1990-1998.	4.4	24
71	Temperature structure and kinematics of the IRDC G035.39–00.33. Astronomy and Astrophysics, 2017, 606, A133.	5.1	24
72	Chemo-kinematics of the Milky Way from the SDSS-III MARVELS survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3244-3265.	4.4	24

#	Article	IF	CITATIONS
73	Fragmentation properties of massive protocluster gas clumps: an ALMA study. Astronomy and Astrophysics, 2018, 615, A94.	5.1	24
74	A TEST OF STAR FORMATION LAWS IN DISK GALAXIES. II. DEPENDENCE ON DYNAMICAL PROPERTIES. Astrophysical Journal, 2014, 787, 68.	4.5	23
75	KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS. Astrophysical Journal, 2015, 805, 1.	4.5	23
76	Hunting for Runaways from the Orion Nebula Cluster. Astrophysical Journal, 2020, 900, 14.	4.5	23
77	IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields. Publications of the Astronomical Society of the Pacific, 2017, 129, 084201.	3.1	22
78	The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity. Astrophysical Journal, 2018, 861, 68.	4.5	22
79	An Ordered Envelope–Disk Transition in the Massive Protostellar Source G339.88-1.26. Astrophysical Journal, 2019, 873, 73.	4.5	21
80	Dynamics of a massive binary at birth. Nature Astronomy, 2019, 3, 517-523.	10.1	21
81	THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS. Astrophysical Journal, 2015, 798, 126.	4.5	20
82	Zooming in to Massive Star Birth. Astrophysical Journal, 2018, 867, 94.	4.5	20
83	Subsonic islands within a high-mass star-forming infrared dark cloud. Astronomy and Astrophysics, 2018, 611, L3.	5.1	20
84	Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback. Astrophysical Journal, 2017, 841, 82.	4.5	18
85	Astrochemical confirmation of the rapid evolution of massive YSOs and explanation for the inferred ages of hot cores. Astronomy and Astrophysics, 2006, 454, L5-L8.	5.1	18
86	ENVIRONMENT AND PROTOSTELLAR EVOLUTION. Astrophysical Journal Letters, 2015, 802, L15.	8.3	17
87	Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	17
88	The inception of star cluster formation revealed by [C <scp>ii</scp>] emission around an Infrared Dark Cloud. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L54-L59.	3.3	17
89	Widespread SiO and CH3OH Emission in Filamentary Infrared-Dark Cloudsã~ Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	16
90	Similar complex kinematics within two massive, filamentary infrared dark clouds. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5268-5289.	4.4	16

#	Article	IF	CITATIONS
91	Inside-out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI. Astrophysical Journal, 2018, 861, 144.	4.5	16
92	The SOFIA Massive (SOMA) Star Formation Survey. II. High Luminosity Protostars. Astrophysical Journal, 2019, 874, 16.	4.5	16
93	ALMA–IRDC: dense gas mass distribution from cloud to core scales. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4601-4626.	4.4	16
94	Measuring the ionisation fraction in a jet from a massive protostar. Nature Communications, 2019, 10, 3630.	12.8	15
95	MRI-active inner regions of protoplanetary discs. I. A detailed model of disc structure. Monthly Notices of the Royal Astronomical Society, 2021, 504, 280-299.	4.4	15
96	Mid- <i>J</i> CO shock tracing observations of infrared dark clouds. Astronomy and Astrophysics, 2016, 587, A96.	5.1	14
97	IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud. Astrophysical Journal, 2018, 869, 72.	4.5	14
98	Interstellar Plunging Waves: ALMA Resolves the Physical Structure of Nonstationary MHD Shocks. Astrophysical Journal Letters, 2019, 881, L42.	8.3	14
99	Multicomponent Kinematics in a Massive Filamentary Infrared Dark Cloud. Astrophysical Journal, 2019, 872, 30.	4.5	14
100	GMC Collisions as Triggers of Star Formation. VII. The Effect of Magnetic Field Strength on Star Formation. Astrophysical Journal, 2020, 891, 168.	4.5	14
101	On the formation of runaway stars BN and x in the Orion Nebula Cluster. Astronomy and Astrophysics, 2018, 612, L7.	5.1	13
102	SiO emission as a probe of cloud–cloud collisions in infrared dark clouds. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1666-1681.	4.4	13
103	FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS. Astrophysical Journal Letters, 2014, 780, L29.	8.3	12
104	Mid- <i>J</i> CO shock tracing observations of infrared dark clouds. I Astronomy and Astrophysics, 2015, 577, A75.	5.1	12
105	MID-J CO SHOCK TRACING OBSERVATIONS OF INFRARED DARK CLOUDS. III. SLED FITTING. Astrophysical Journal, 2016, 827, 107.	4.5	12
106	The SOFIA Massive (SOMA) Star Formation Survey. III. From Intermediate- to High-mass Protostars. Astrophysical Journal, 2020, 904, 75.	4.5	12
107	Star Cluster Formation from Turbulent Clumps. I. The Fast Formation Limit. Astrophysical Journal, 2017, 838, 116.	4.5	11
108	The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	11

#	Article	IF	CITATIONS
109	The formation of supermassive black holes from Population III.1 seeds. I. Cosmic formation histories and clustering properties. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3592-3606.	4.4	11
110	HST Survey of the Orion Nebula Cluster in the H ₂ O 1.4 μm Absorption Band. I. A Census of Substellar and Planetary-mass Objects. Astrophysical Journal, 2020, 896, 79.	4.5	11
111	Star cluster formation in Orion A. Publication of the Astronomical Society of Japan, 2021, 73, S239-S255.	2.5	11
112	Star cluster formation from turbulent clumps. II. Gradual star cluster formation. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4999-5019.	4.4	10
113	Disk Wind Feedback from High-mass Protostars. Astrophysical Journal, 2019, 882, 123.	4.5	10
114	The High-mass Protostellar Population of a Massive Infrared Dark Cloud. Astrophysical Journal, 2020, 897, 136.	4.5	10
115	Discovery of a Photoionized Bipolar Outflow toward the Massive Protostar G45.47+0.05. Astrophysical Journal Letters, 2019, 886, L4.	8.3	10
116	MAGNETIC FIELDS AND GALACTIC STAR FORMATION RATES. Astrophysical Journal Letters, 2015, 800, L11.	8.3	9
117	STRUCTURE, DYNAMICS, AND DEUTERIUM FRACTIONATION OF MASSIVE PRE-STELLAR CORES. Astrophysical Journal, 2016, 833, 274.	4.5	9
118	The Stellar Content of the Infalling Molecular Clump G286.21+0.17. Astrophysical Journal, 2017, 850, 12.	4.5	9
119	The SOMA Radio Survey. I. Comprehensive SEDs of High-mass Protostars from Infrared to Radio and the Emergence of Ionization Feedback. Astrophysical Journal, 2019, 873, 20.	4.5	9
120	Gas Kinematics of the Massive Protocluster G286.21+0.17 Revealed by ALMA. Astrophysical Journal, 2020, 894, 87.	4.5	9
121	GMC Collisions as Triggers of Star Formation. IV. The Role of Ambipolar Diffusion. Astrophysical Journal, 2017, 848, 50.	4.5	8
122	Outflow-confined H ii Regions. II. The Early Break-out Phase. Astrophysical Journal, 2017, 849, 133.	4.5	8
123	Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission. Astrophysical Journal Letters, 2018, 855, L25.	8.3	8
124	The Core Mass Function across Galactic Environments. III. Massive Protoclusters. Astrophysical Journal, 2021, 916, 45.	4.5	8
125	SiO Outflows as Tracers of Massive Star Formation in Infrared Dark Clouds. Astrophysical Journal, 2021, 921, 96.	4.5	8
126	Is There Any Linkage between Interstellar Aldehyde and Alcohol?. Astrophysical Journal, 2021, 922, 194.	4.5	8

#	Article	IF	CITATIONS
127	Negative and positive feedback from a supernova remnant with SHREC: a detailed study of the shocked gas in IC443. Monthly Notices of the Royal Astronomical Society, 2022, 511, 953-963.	4.4	8
128	ALMA–IRDC – II. First high-angular resolution measurements of the 14N/15N ratio in a large sample of infrared-dark cloud cores. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4320-4335.	4.4	6
129	Inside–out planet formation: VI. oligarchic coagulation of planetesimals from a pebble ring?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5486-5499.	4.4	6
130	SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs. Astrophysical Journal, 2015, 814, 28.	4.5	5
131	IN-SYNC. VII. Evidence for a Decreasing Spectroscopic Binary Fraction (from 1 to 100 Myr) within the IN-SYNC Sample. Astrophysical Journal, 2017, 851, 14.	4.5	5
132	Deuterium chemodynamics of massive pre-stellar cores. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1104-1127.	4.4	5
133	Carbon Chain Chemistry in Hot-core Regions around Three Massive Young Stellar Objects Associated with 6.7 GHz Methanol Masers. Astrophysical Journal, 2021, 908, 100.	4.5	5
134	Astrochemical modelling of infrared dark clouds. Astronomy and Astrophysics, 2022, 662, A39.	5.1	5
135	Star Formation at Zero and Very Low Metallicities. AIP Conference Proceedings, 2008, , .	0.4	4
136	Molecular Clouds: Internal Properties, Turbulence, Star Formation and Feedback. Proceedings of the International Astronomical Union, 2012, 8, 19-28.	0.0	4
137	An Overview of Inside-Out Planet Formation. Proceedings of the International Astronomical Union, 2015, 11, 6-13.	0.0	4
138	Stellar Variability in a Forming Massive Star Cluster. Astrophysical Journal, 2020, 897, 51.	4.5	4
139	Star Formation in a Strongly Magnetized Cloud. Astrophysical Journal, 2021, 916, 78.	4.5	4
140	Vibrationally Excited Lines of HC ₃ N Associated with the Molecular Disk around the G24.78+0.08 A1 Hypercompact H ii Region. Astrophysical Journal, 2022, 931, 99.	4.5	3
141	Population III.1 stars: formation, feedback and evolution of the IMF. Proceedings of the International Astronomical Union, 2008, 4, 24-32.	0.0	2
142	Pebble Delivery for Inside-Out Planet Formation. Proceedings of the International Astronomical Union, 2014, 9, 66-69.	0.0	2
143	Comparison of Low-Mass and High-Mass Star Formation. Proceedings of the International Astronomical Union, 2015, 11, 154-162.	0.0	2
144	An X-Ray View of Two Infrared Dark Clouds G034.43+00.24 and G035.39â^'00.33. Astrophysical Journal, 2020, 905, 78.	4.5	2

#	Article	IF	CITATIONS
145	MRI-active inner regions of protoplanetary discs – II. Dependence on dust, disc, and stellar parameters. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5974-5991.	4.4	2
146	NIR jets from a clustered region of massive star formation. Astronomy and Astrophysics, 2022, 659, A23.	5.1	2
147	Protostellar Feedback Processes and the Mass of the First Stars. , 2010, , .		1
148	Fire from Ice - Massive Star Birth from Infrared Dark Clouds. Proceedings of the International Astronomical Union, 2017, 13, 139-152.	0.0	1
149	Massive star and star cluster formation. Proceedings of the International Astronomical Union, 2006, 2, 258-264.	0.0	0
150	Star Formation and the Properties of Giant Molecular Clouds in Global Simulations. Proceedings of the International Astronomical Union, 2010, 6, 377-380.	0.0	0
151	Multiple Feedback in Low-Metallicity Massive Star Formation. Proceedings of the International Astronomical Union, 2018, 14, 190-194.	0.0	0