Sho Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	80
2	Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Frontiers in Endocrinology, 2019, 10, 312.	3.5	55
3	Kisspeptin Neurons and Estrogen–Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. International Journal of Molecular Sciences, 2021, 22, 9229.	4.1	36
4	Molecular and Epigenetic Mechanism Regulating Hypothalamic <i>Kiss1</i> Gene Expression in Mammals. Neuroendocrinology, 2016, 103, 640-649.	2.5	24
5	A neurokinin 3 receptor-selective agonist accelerates pulsatile luteinizing hormone secretion in lactating cattleâ€. Biology of Reproduction, 2017, 97, 81-90.	2.7	22
6	Conditional kisspeptin neuron-specific <i>Kiss1</i> knockout with newly generated <i>Kiss1</i> -floxed and <i>Kiss1</i> -Cre mice replicates a hypogonadal phenotype of global <i>Kiss1</i> knockout mice. Journal of Reproduction and Development, 2020, 66, 359-367.	1.4	21
7	Inducible <i>Kiss1</i> knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. Journal of Reproduction and Development, 2020, 66, 369-375.	1.4	19
8	Cellular and molecular mechanisms regulating the KNDy neuronal activities to generate and modulate GnRH pulse in mammals. Frontiers in Neuroendocrinology, 2022, 64, 100968.	5.2	18
9	Prepartum change in ventral tail base surface temperature in beef cattle: comparison with vaginal temperature and behavior indices, and effect of ambient temperature. Journal of Reproduction and Development, 2019, 65, 515-525.	1.4	13
10	SB223412, a neurokinin-3 receptor-selective antagonist, suppresses testosterone secretion in male guinea pigs. Theriogenology, 2017, 102, 183-189.	2.1	11
11	Kisspeptin neurons as a key player bridging the endocrine system and sexual behavior in mammals. Frontiers in Neuroendocrinology, 2022, 64, 100952.	5.2	11
12	Mating-induced increase in <i>Kiss1</i> mRNA expression in the anteroventral periventricular nucleus prior to an increase in LH and testosterone release in male rats. Journal of Reproduction and Development, 2020, 66, 579-586.	1.4	10
13	Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation. Endocrinology, 2021, 162, .	2.8	4
14	Reduction of arcuate kappa-opioid receptor-expressing cells increased luteinizing hormone pulse frequency in female rats. Endocrine Journal, 2021, 68, 933-941.	1.6	3
15	Streptococcal Exotoxin Streptolysin O Causes Vascular Endothelial Dysfunction Through PKCÎ ² Activation. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, JPET-AR-2021-000752.	2.5	2
16	<i>Kiss1</i> -dependent and independent release of luteinizing hormone and testosterone in perinatal male rats. Endocrine Journal, 2022, 69, 797-807.	1.6	2
17	Gene-expression profile and postpartum transition of bovine endometrial side population cellsâ€. Biology of Reproduction, 2021, 104, 850-860.	2.7	0