John J Lewandowski

List of Publications by Citations

Source: https://exaly.com/author-pdf/4018509/john-j-lewandowski-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 248
 11,862
 53
 102

 papers
 citations
 h-index
 g-index

 256
 12,898
 4.2
 6.68

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
248	Intrinsic plasticity or brittleness of metallic glasses. <i>Philosophical Magazine Letters</i> , 2005 , 85, 77-87	1	927
247	Metal Additive Manufacturing: A Review of Mechanical Properties. <i>Annual Review of Materials Research</i> , 2016 , 46, 151-186	12.8	827
246	Temperature rise at shear bands in metallic glasses. <i>Nature Materials</i> , 2006 , 5, 15-18	27	736
245	Fracture of brittle metallic glasses: brittleness or plasticity. <i>Physical Review Letters</i> , 2005 , 94, 125510	7.4	435
244	Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1989 , 107, 241-255	5.3	334
243	Overview of Materials Qualification Needs for Metal Additive Manufacturing. <i>Jom</i> , 2016 , 68, 747-764	2.1	301
242	Mechanical Properties of Bulk Metallic Glasses. MRS Bulletin, 2007, 32, 635-638	3.2	298
241	Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1991 , 22, 1573-1583		265
240	High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. <i>Acta Materialia</i> , 2017 , 123, 285-294	8.4	262
239	Ultrahigh-Temperature Nb-Silicide-Based Composites. MRS Bulletin, 2003, 28, 646-653	3.2	241
238	Mechanical behaviour of laminated metal composites. <i>International Materials Reviews</i> , 1996 , 41, 169-19	716.1	238
237	Crack initiation and growth toughness of an aluminum metal-matrix composite. <i>Acta Metallurgica Et Materialia</i> , 1990 , 38, 489-496		222
236	Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. <i>Scripta Materialia</i> , 1998 , 38, 1811-1817	5.6	210
235	Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. <i>Jom</i> , 2017 , 69, 439-455	2.1	194
234	Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research, 2005 , 20, 2307-2313	2.5	163
233	Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2002 , 82, 3427-3	441	147
232	Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM TiBALBV. <i>International Journal of Fatigue</i> , 2017 , 94, 263-287	5	139

231	Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy. <i>Scripta Materialia</i> , 1999 , 41, 19-24	5.6	138
230	Effects of heat treatment and reinforcement size. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1993 , 24, 2531-2543		136
229	Carbon Additions to Molybdenum Disilicide: Improved High-Temperature Mechanical Properties. Journal of the American Ceramic Society, 1991 , 74, 2704-2706	3.8	134
228	Intrinsic and extrinsic toughening of metallic glasses. <i>Scripta Materialia</i> , 2006 , 54, 337-341	5.6	124
227	Tough Fe-based bulk metallic glasses. <i>Applied Physics Letters</i> , 2008 , 92, 091918	3.4	106
226	Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986 , 17, 1769-178	36	105
225	Compressive plasticity and toughness of a Ti-based bulk metallic glass. <i>Acta Materialia</i> , 2010 , 58, 1708-1	782P	99
224	Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials. <i>International Materials Reviews</i> , 1998 , 43, 145-187	16.1	99
223	Effects of Annealing and Changes in Stress State on Fracture Toughness of Bulk Metallic Glass. <i>Materials Transactions</i> , 2001 , 42, 633-637	1.3	98
222	Toughness, extrinsic effects and Poisson ratio of bulk metallic glasses. <i>Acta Materialia</i> , 2012 , 60, 4800-4	4 8 .0p9	94
221	Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys. <i>Jom</i> , 2015 , 67, 2288-2295	2.1	93
220	Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 1996 , 220, 85-92	5.3	87
219	Deformation and fracture toughness of a bulk amorphous ZrTiNiCuBe alloy. <i>Intermetallics</i> , 2000 , 8, 487-492	3.5	85
218	Dynamic deformation behavior of Al?Zn?Mg?Cu alloy matrix composites reinforced with 20 Vol.% SiC. <i>Acta Metallurgica Et Materialia</i> , 1993 , 41, 2337-2351		84
217	Local temperature rises during mechanical testing of metallic glasses. <i>Journal of Materials Research</i> , 2007 , 22, 419-427	2.5	81
216	Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V. <i>Jom</i> , 2015 , 67, 597-607	2.1	79
215	Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness. <i>Acta Metallurgica Et Materialia</i> , 1995 , 43, 1955-1967		79
214	The mechanism of mechanical alloying of MoSi2. <i>Journal of Materials Research</i> , 1993 , 8, 1311-1316	2.5	74

213	Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1992 , 150, 179-186	5.3	74	
212	Segregation to SiC/Al interfaces in Al based metal matrix composites. <i>Scripta Metallurgica Et Materialia</i> , 1990 , 24, 1483-1487		74	
211	Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb. <i>Journal of Alloys and Compounds</i> , 2017 , 729, 1118-1135	5.7	73	
210	Observations on the effects of particulate size and superposed pressure on deformation of metal matrix composites. <i>Scripta Metallurgica Et Materialia</i> , 1991 , 25, 21-26		71	
209	Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 461-472		70	
208	Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. <i>Scripta Materialia</i> , 2004 , 51, 151-154	5.6	67	
207	On the slip systems in MoSi2. <i>Acta Metallurgica Et Materialia</i> , 1992 , 40, 3159-3165		64	
206	Processing and properties of Nb5Si3 and tough Nb5Si3/Nb laminates. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1992 , 155, 59-65	5.3	63	
205	Microstructure-property relationships in pearlitic eutectoid and hypereutectoid carbon steels. <i>Jom</i> , 2002 , 54, 25-30	2.1	62	
204	Loading rate and test temperature effects on fracture ofIn Situ niobium silicide-niobium composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1996 , 27, 3292-3306	2.3	61	
203	Micro- and macrostructural factors in DRA fracture resistance. <i>Jom</i> , 1993 , 45, 30-35	2.1	61	
202	Micromechanisms of cleavage fracture in fully pearlitic microstructures. <i>Acta Metallurgica</i> , 1987 , 35, 145	53-14	52 61	
201	The effects of superimposed hydrostatic pressure on deformation and fracture: Part II. Particulate-reinforced 6061 composites. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1993 , 24, 609-615		59	
200	Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. <i>Journal of Materials Research</i> , 2007 , 22, 389-401	2.5	57	
199	Effects of carbon additions on the high temperature mechanical properties of molybdenum disilicide. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1992 , 155, 159-163	5.3	57	
198	Effects of aging condition on the fracture toughness of 2XXX and 7XXX series aluminum alloy composites. <i>Scripta Metallurgica</i> , 1989 , 23, 301-304		55	
197	Spall strength and Hugoniot elastic limit of a zirconium-based bulk metallic glass under planar shock compression. <i>Journal of Materials Research</i> , 2007 , 22, 402-411	2.5	53	
196	Fatigue behavior of high-entropy alloys: A review. <i>Science China Technological Sciences</i> , 2018 , 61, 168-17	78 .5	53	

195	Effects of Casting Conditions and Deformation Processing on A356 Aluminum and A356-20 Vol. % SiC Composites. <i>Journal of Composite Materials</i> , 1992 , 26, 2076-2106	2.7	52
194	Effects of microstructure of the behavior of an aluminum alloy and an aluminum matrix composite tested under low levels of superimposed hydrostatic pressure. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1989 , 20, 2409-2417		52
193	Pressure effects on metallic glasses. <i>Acta Materialia</i> , 2010 , 58, 1026-1036	8.4	47
192	Ductile-to-brittle transition in a Ti-based bulk metallic glass. <i>Scripta Materialia</i> , 2009 , 60, 1027-1030	5.6	45
191	Effects of layer thickness on impact toughness of Al/AlSiCp laminates. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1994 , 183, 59-67	5.3	45
190	Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. <i>Journal of Nuclear Materials</i> , 2017 , 486, 86-95	3.3	44
189	Effects of thickness and orientation on the small scale fracture behaviour of additively manufactured Ti-6Al-4V. <i>Materials Characterization</i> , 2018 , 143, 94-109	3.9	44
188	Laminated composites with improved toughness. <i>Scripta Metallurgica Et Materialia</i> , 1990 , 24, 1515-151	9	44
187	Sample size and preparation effects on the tensile ductility of Pd-based metallic glass nanowires. <i>Acta Materialia</i> , 2015 , 87, 1-7	8.4	43
186	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018 , 9,	4.8	41
185	Effects of test temperature, grain size, and alloy additions on the cleavage fracture stress of polycrystalline niobium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1997 , 28, 389-399	2.3	41
184	Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. <i>Philosophical Magazine Letters</i> , 2008 , 88, 853-861	1	41
183	Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass. <i>Applied Physics Letters</i> , 2006 , 89, 181911	3.4	40
182	Unconstrained and constrained tensile flow and fracture behavior of an Nb-1.24 At. Pct Si alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 1767-177	76 ^{2.3}	40
181	The effects of hydrostatic pressure on the mechanical behavior of NiAl. <i>Scripta Metallurgica Et Materialia</i> , 1991 , 25, 2017-2022		40
180	Fracture toughness of monolithic nickel aluminide intermetallics. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1992 , 149, 143-151	5.3	39
179	Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys. <i>Acta Materialia</i> , 2017 , 134, 116-127	8.4	36
178	Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite. <i>International Journal of Fracture</i> , 1989 , 40, R31-R34	2.3	36

177	Effects of impurity segregation on sustained load cracking of Cr-1Mo steels Crack initiation. <i>Acta Metallurgica</i> , 1987 , 35, 593-608		36
176	Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti월8AlឱNb2Cr. <i>Intermetallics</i> , 2015 , 57, 73-82	3.5	35
175	In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope. <i>Scripta Metallurgica</i> , 1989 , 23, 1801-1804		35
174	Effects of surface laser treatments on microstructure, tension, and fatigue behavior of AISI 316LVM biomedical wires. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 688, 101-113	5.3	34
173	Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). <i>International Journal of Fatigue</i> , 2004 , 26, 305-309	5	34
172	Design of Inserts for Split-Hopkinson Pressure Bar Testing of Low Strain-to-Failure Materials. <i>Experimental Mechanics</i> , 2009 , 49, 479-490	2.6	32
171	Delamination study using four-point bending of bilayers. <i>Journal of Materials Science</i> , 1997 , 32, 3851-3	856 3	32
170	Effects of Test Temperature and Loading Conditions on the Tensile Properties of a Zr-Based Bulk Metallic Glass. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 1922-1934	2.3	32
169	Quantitative evaluation of ⊞Al nano-particles in amorphous Al87Ni7Gd6⊞omparison of XRD, DSC, and TEM. <i>Scripta Materialia</i> , 2003 , 48, 1537-1541	5.6	32
168	Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. <i>Journal of Applied Physics</i> , 2008 , 104, 093522	2.5	31
167	Environmental effects on ductile-phase toughening in Nb5Si3-Nb composites. <i>Jom</i> , 1992 , 44, 36-41	2.1	31
166	The effects of superimposed hydrostatic pressure on deformation and fracture: Part I. Monolithic 6061 aluminum. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1993 , 24, 601-608		31
165	Improved understanding of environment-induced cracking (EIC) of sensitized 5XXX series aluminium alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 682, 613-621	5.3	29
164	Increased Toughness of Zirconium-Based Bulk Metallic Glasses Tested under Mixed Mode Conditions. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 149-158	2.3	29
163	Mechanical behaviour of laminated metal composites		29
162	Pressure-induced dislocations and subsequent flow in NiAl. <i>Acta Metallurgica Et Materialia</i> , 1993 , 41, 485-496		28
161	Laminated nanostructure composites with improved bend ductility and toughness. <i>Scripta Materialia</i> , 2009 , 61, 1072-1074	5.6	26
160	Effects of Changes in Test Temperature and Loading Conditions on Fracture Toughness of a Zr-Based Bulk Metallic Glass. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> 2008 39 2077-2085	2.3	26

159	Effects of annealing at high pressure on structure and mechanical properties of Al87Ni7Gd6 metallic glass. <i>Intermetallics</i> , 2002 , 10, 1099-1103	3.5	26
158	The decrease in yield strength in NiAl due to hydrostatic pressure. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 26, 1733-1736		26
157	Effects of superimposed hydrostatic pressure on the fracture properties of particulate reinforced metal matrix composites. <i>Scripta Metallurgica</i> , 1989 , 23, 253-256		26
156	Yielding and work hardening effects in notched bend bars. <i>Journal of the Mechanics and Physics of Solids</i> , 1986 , 34, 433-454	5	26
155	Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys. <i>Materials Science & Engineering A: Structural Materials:</i> Properties, Microstructure and Processing, 2016, 661, 222-232	5.3	25
154	Effects of test temperature, grain size, and alloy additions on the low-temperature fracture toughness of polycrystalline niobium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1997 , 28, 2297-2307	2.3	25
153	Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials		25
152	Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity of an Iron-Based Metallic Glass. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 1314-1323	2.3	24
151	Delamination of a sensitized commercial AlMg alloy during fatigue crack growth. <i>Scripta Materialia</i> , 2010 , 63, 799-802	5.6	24
150	Microstructural effects on tension behavior of Cull 5NiBSn sheet. <i>Materials Science & Discrete Science & Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 769-781	5.3	24
149	Influence of thickness in the fracture resistance of conventional and laminated DRA materials. <i>Scripta Metallurgica Et Materialia</i> , 1994 , 31, 191-195		24
148	Crack bridging in a laminated metal matrix composite. <i>Scripta Metallurgica Et Materialia</i> , 1994 , 31, 607-6	12	24
147	Laminated composites with improved bend ductility and toughness. <i>Journal of Materials Science Letters</i> , 1991 , 10, 461-463		24
146	The fracture resistance of layered DRA materials: Influence of laminae thickness. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 229, 1-9	5.3	23
145	Notch effects on tensile behavior of Ni3AI and Ni3AI + B. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1989 , 20, 1247-1255		23
144	Effects of particulate volume fraction on cyclic stress response and fatigue life of AZ91D magnesium alloy metal matrix composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 600, 188-194	5.3	22
143	Effects of R-ratio on the fatigue crack growth of Nb-Si(ss) and Nb-10Si In Situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1749-175	7 .3	22
142	{103}<331> slip in MoSi2. <i>Philosophical Magazine Letters</i> , 1993 , 67, 313-321	1	22

141	The effects of interstitial content, heat treatment, and prestrain on the tensile properties of NiAl. <i>Materials Science & Materials Science & Microstructure and Processing</i> , 1995 , 192-193, 179-185	5.3	22	
140	Model experiments to mimic fracture surface features in metallic glasses. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 2207-2213	5.3	21	
139	Fracture characteristics of an AlBiMg model composite system. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993 , 172, 63-69	5.3	21	
138	Flex bending fatigue testing of wires, foils, and ribbons. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 601, 123-130	5.3	20	
137	Effects of lamination and changes in layer thickness on fatigue-crack propagation of lightweight laminated metal composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 45-52	2.3	20	
136	Combined Mode I-Mode III Fracture Toughness of a Particulate Reinforced Metal-Matrix Composite. Journal of Composite Materials, 1991 , 25, 831-841	2.7	20	
135	Lead-induced solid metal embrittlement of an excess silicon AlMgBi alloy at temperatures of AlC to 80°C. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1992 , 23, 1679-1689		20	
134	Effects of impurity segregation and test environment on sustained load cracking of steel. Crack propagation. <i>Acta Metallurgica</i> , 1987 , 35, 2081-2090		20	
133	Fatigue and fracture of wires and cables for biomedical applications. <i>International Materials Reviews</i> , 2016 , 61, 231-314	16.1	20	
132	Spall strength of a zirconium-based bulk metallic glass under shock-induced compression-and-shear loading. <i>Mechanics of Materials</i> , 2009 , 41, 886-897	3.3	19	
131	Fatigue coaxing experiments on a Zr-based bulk-metallic glass. <i>Scripta Materialia</i> , 2010 , 62, 481-484	5.6	19	
130	Inertial stabilization of buckling at high rates of loading and low test temperatures: Implications for dynamic crush resistance of aluminum-alloy-based sandwich plates with lattice core. <i>Acta Materialia</i> , 2007, 55, 2829-2840	8.4	19	
129	Intergranular fracture of Al?Li alloys: Effects of aging and impurities. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1990 , 123, 219-227	5.3	19	
128	Matrix effects on the ductility of aluminium-based composites deformed under hydrostatic pressure. <i>Journal of Materials Science Letters</i> , 1989 , 8, 1447-1448		18	
127	In-situ scanning electron microscope studies of crack growth in an aluminum metal-matrix composite. <i>Scripta Metallurgica Et Materialia</i> , 1990 , 24, 2357-2362		18	
126	Effects of Annealing and Pressure on Devitrification and Mechanical Properties of Amorphous Al87Ni7Gd6. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 1935-1941	2.3	17	
125	Interface Effects on the Quasi-Static and Impact Toughness of Discontinuously Reinforced Aluminum Laminates. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 1993-2006	2.3	17	
124	The effects of reinforcement additions and heat treatment on the evolution of the poisson ratio during straining of discontinuously reinforced aluminum alloys. <i>Metallurgical and Materials</i> Transactions A: Physical Metallurgy and Materials Science 1995, 26, 2911-2921	2.3	17	

(2008-1992)

123	intermetallics. <i>Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials Science & Distribution on Fracture Loughness of Composite nickel aluminide intermetallics. Materials</i>	5.3	17	
122	Tension and fatigue behavior of Al-2124A/SiC-particulate metal matrix composites. <i>Materials Science & Materials and Processing</i> , 2020 , 770, 138518	5.3	17	
121	Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys. <i>Corrosion Science</i> , 2018 , 138, 219-241	6.8	16	
120	Stress-State Effects on the Fracture of a Zr-Ti-Ni-Cu-Be Bulk Amorphous Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 1758-1766	2.3	16	
119	Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes. <i>Materials Science & Materials Science & Materials Science & Microstructure and Processing</i> , 2008 , 486, 447-454	5.3	16	
118	Effects of lead on the sustained-load cracking of Al?Mg?Si at ambient temperatures. <i>Materials Science and Engineering</i> , 1987 , 96, 185-195		16	
117	Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance. <i>Advanced Engineering Materials</i> , 2015 , 17, 620-625	3.5	15	
116	Anisotropy of corrosion and environmental cracking in AA5083-H128 Al-Mg alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 730, 367-379	5.3	15	
115	Shear yield and flow behavior of a zirconium-based bulk metallic glass. <i>Mechanics of Materials</i> , 2010 , 42, 248-255	3.3	15	
114	Microstructural effects on tension and fatigue behavior of Cull 5NiBSn sheet. <i>Materials Science & Materials Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 491, 137-146	5.3	15	
113	Enhanced fracture resistance in layered discontinuously reinforced aluminium. <i>Materials Science and Technology</i> , 1996 , 12, 1001-1006	1.5	15	
112	Poisson ratio measurements for an al-based metal matrix composite during elastic and plastic deformation. <i>Scripta Metallurgica Et Materialia</i> , 1993 , 29, 199-204		15	
111	Mathematical modeling and mechanical and histopathological testing of porous prosthetic pylon for direct skeletal attachment. <i>Journal of Rehabilitation Research and Development</i> , 2009 , 46, 315-30		15	
110	Microstructural heterogeneity and texture of as-received, vacuum arc-cast, extruded, and re-extruded NiTi shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2017 , 712, 494-509	5.7	14	
109	A Damage-tolerant Bulk Metallic Glass at Liquid-nitrogen Temperature. <i>Journal of Materials Science and Technology</i> , 2014 , 30, 627-630	9.1	14	
108	Effects of Changes in Notch Radius and Test Temperature on the Toughness of a Nano-crystalline Aluminum Alloy Composite Produced via Extrusion of Amorphous Aluminum Alloy Powders. Materials Science & Description of Amorphous Aluminum Alloy Powders. Materials Science & Description of Amorphous Aluminum Alloy Powders.	5.3	14	
107	Flow and fracture of bimaterial systems based on aluminum alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1996 , 27, 3937-3947	2.3	14	
106	Tension and fatigue behavior of silver-cored composite multi-strand cables used as implantable cables and electrodes. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 492, 191-198	5.3	13	

105	Fracture and Fatigue of Particulate MMCs 2000 , 151-187		13
104	Yield point behavior in NiAl. <i>Scripta Metallurgica Et Materialia</i> , 1993 , 29, 1309-1312		13
103	Interfacial fracture toughness measurement using indentation. <i>Journal of Materials Science</i> , 1994 , 29, 4022-4026	4.3	13
102	Process Mapping, Fracture and Fatigue Behavior of Ti-6Al-4V Produced by Ebm Additive Manufacturing 2016 , 1373-1377		13
101	Pre-exposure embrittlement of a commercial Al-Mg-Mn alloy, AA5083-H131. <i>Corrosion Reviews</i> , 2017 , 35, 275-290	3.2	12
100	Effects of microstructure on high strain rate deformation and flow behaviour of AlMgBi alloy (AA 6061) under uniaxial compression and combined compression and shear loading. <i>Materials Science and Technology</i> , 2011 , 27, 13-20	1.5	12
99	Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (K ID) of polycrystalline niobium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2003 , 34, 967-978	2.3	12
98	Effects of microstructural characteristics on mechanical properties of open-cell nickel foams. <i>Materials Science and Technology</i> , 2005 , 21, 1355-1358	1.5	12
97	Through-thickness inhomogeneity of environmentally assisted cracking (EAC) in AA5083-H128 alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 740-741, 34-48	5.3	12
96	Evolution of fatigue crack growth and fracture behavior in gamma titanium aluminide Ti-43.5Al-4Nb-1Mo-0.1B (TNM) forgings. <i>International Journal of Fatigue</i> , 2018 , 111, 54-69	5	11
95	Deformation texture of hydrostatically extruded polycrystalline NiAl. <i>Scripta Metallurgica Et Materialia</i> , 1993 , 29, 1651-1654		11
94	Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal		11
93	Dynamic Fracture of a Zr-based Bulk Metallic Glass. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2013 , 44, 4644-4653	2.3	10
92	Delamination of Sensitized Al-Mg Alloy During Fatigue Crack Growth in Room Temperature Air. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2012 , 43, 3952-395	56 ^{2.3}	10
91	The influence of hydrostatic pressure on fracture of single-crystal and polycrystalline NiAl. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1994 , 25, 1457-147	70 ^{2.3}	10
90	Microstructural Effects on Ductile Phase Toughening of Nb-Nb Silicide Composites. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 120, 103		10
89	Weibull modulus of hardness, bend strength, and tensile strength of NillaCoX metallic glass ribbons. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 634, 176-182	5.3	9
88	Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts. <i>Metals</i> , 2020 , 10, 1340	2.3	9

87	Outer medium effects and fracture nucleation sites in model experiments to mimic fracture surface features of metallic glasses. <i>Materials Science & Dispersion A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 538, 259-264	5.3	9
86	Pressure and temperature effects on tensile strength andplasticity of metallic glasses. <i>Mechanics of Materials</i> , 2013 , 67, 86-93	3.3	9
85	Failure Analysis of Cast Iron Trunk Main in Cleveland, Ohio. <i>Journal of Failure Analysis and Prevention</i> , 2012 , 12, 217-236	0.9	9
84	Effects of Changes in Chemistry and Testing Temperature on Mechanical Behavior of Al-Based Amorphous Alloy Ribbons. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 2269-2275	2.3	9
83	Effects of dislocation substructure on strength and toughness in polycrystalline NiAI processed via low-temperature hydrostatic extrusion. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1998 , 78, 643-656		9
82	Fatigue and fracture of porous steels and Cu-infiltrated porous steels. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1999 , 30, 325-334	2.3	9
81	Properties of monolithic and composite NiAl processed by hydrostatic extrusion and vacuum hot-pressing. <i>Composites Science and Technology</i> , 1994 , 52, 163-172	8.6	9
80	Microstructural evolution in an Al-Zn-Mg-Cu alloy-20 vol. % SiC composite shock-loaded to 5 GPa. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 27, 431-436		9
79	Microstructure and Mechanical Properties of Ti-48Al-2Cr-2Nb Manufactured Via Electron Beam Melting 2016 , 1317-1322		9
78	Fatigue crack growth and fracture behavior of as-cast Ti-43.5Al-4Nb-1Mo-0.1B (TNM) compared to Ti-48Al-2Nb-2Cr (4822). <i>Intermetallics</i> , 2017 , 91, 158-168	3.5	8
77	Effects of build orientation and sample geometry on the mechanical response of miniature CP-Ti Grade 2 strut samples manufactured by laser powder bed fusion. <i>Additive Manufacturing</i> , 2020 , 35, 101	46 3	8
76	Effects of Composition Changes on Strength, Bend Ductility, Toughness, and Flex-Bending Fatigue of Iron-Based Metallic Glass Ribbons. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2012 , 43, 2697-2705	2.3	8
75	Effects of changes in strain rate and test temperature on Mg85Ca5Cu10 metallic glass ribbons. <i>Materials Science & Materials Science & Microstructure and Processing</i> , 2010 , 527, 2214-2221	5.3	8
74	Effects of changes in temperature on fatigue crack growth of adhesively bonded Al 2080/SiC/20p-2080 Al laminated composites. <i>Journal of Materials Science</i> , 2004 , 39, 3063-3067	4.3	8
73	Pressure effects on flow and fracture of Be-Al alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2002 , 33, 3555-3564	2.3	8
72	Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7XXX alloy during slow strain rate testing. <i>Scripta Metallurgica Et Materialia</i> , 1995 , 33, 1393-1399		8
71	Observations of static strain-aging in polycrystalline NiAl. <i>Intermetallics</i> , 1996 , 4, 533-542	3.5	8
70	Chemical stability of titanium diboride reinforcement in nickel aluminide matrices. <i>Journal of Materials Science</i> , 1993 , 28, 3911-3922	4.3	8

69	Initiation and short crack growth behaviour of environmentally induced cracks in AA5083 H131 investigated across time and length scales. <i>Corrosion Reviews</i> , 2019 , 37, 469-481	3.2	7
68	The effects of changes in test temperature and loading conditions on fracture toughness of a loughened Zr-based bulk metallic glass composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 540, 97-101	5.3	7
67	Grain orientation effects on delamination during fatigue of a sensitized AlMg alloy. <i>Philosophical Magazine Letters</i> , 2015 , 95, 526-533	1	7
66	First-principles calculation of elastic moduli of early-late transition metal alloys. <i>Physical Review B</i> , 2014 , 89,	3.3	7
65	High cycle fatigue behavior of a nanostructured composite produced via extrusion of amorphous Al89Gd7Ni3Fe1 alloy powders. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 513-514, 202-207	5.3	7
64	Fatigue crack growth behavior of Nb-10Si in-situ composites. <i>Scripta Materialia</i> , 1998 , 38, 1775-1780	5.6	7
63	Effects of changes in test temperature on fatigue crack propagation of Al6090/SiCp-Al 6013 laminated metal composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2291-2303	2.3	7
62	Strength differential measurements in IN 718: Effects of superimposed pressure. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2003 , 34, 1736-1739	2.3	7
61	Environmentally induced crack (EIC) initiation, propagation, and failure: A 3D in-situ time-lapse study of AA5083 H131. <i>Corrosion Science</i> , 2020 , 174, 108834	6.8	6
60	Degradation of metallic materials studied by correlative tomography. <i>IOP Conference Series:</i> Materials Science and Engineering, 2017 , 219, 012001	0.4	6
59	Sustained-load crack growth of hydrogen-charged surface-hardened 316L stainless steel. <i>Materials Science & Microstructure and Processing</i> , 2012 , 556, 43-50	5.3	6
58	Effects of Changes in Chemistry on Flex Bending Fatigue Behavior of Al-Based Amorphous Alloy Ribbons. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2012 , 43, 2687-2696	2.3	6
57	Microstructural effects on crack path selection in bending and fatigue in a Nb🛮 9Si 🖰 Cr 🖪 .5Hf 🗷 4Ti 🗗 .75Sn 🗗 Waterials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010 , 527, 1489-1500	5.3	6
56	Effects of high temperature and thermal exposure on fatigue crack propagation of laminated metal composites. <i>Materials Science and Technology</i> , 2007 , 23, 1505-1512	1.5	6
55	Effects of mixed mode loading on the fracture toughness of bulk metallic glass/W composites. <i>Materials Science & A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 586, 413-417	5.3	5
54	The effect of mixed mode I/II on the fracture toughness and fracture behavior of nano-structured metal matrix composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 559, 897-901	5.3	5
53	Effects of microstructural changes, loading conditions and test temperature on toughness of fully pearlitic eutectoid steel used in transportation industry. <i>Materials Science and Technology</i> , 2009 , 25, 369	9-378	5
52	Effects of processing conditions and test temperature on fatigue crack growth and fracture toughness of BeAl metal matrix composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 344, 215-228	5.3	5

51	Loading Rate Effects on Ductile-Phase Toughening in In-Situ Niobium Silicide-Niobium Composites. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 213, 1001		5	
50	The nucleation of high temperature brittle intergranular fracture in 2.25cr-1mo steel. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1988 , 19, 3005-3011		5	
49	Fracture and Fatigue of DRA Composites 1996 , 895-904		5	
48	Anharmonic model for the elastic constants of bulk metallic glass across the glass transition. <i>Physical Review B</i> , 2018 , 97,	3.3	4	
47	Modern fracture mechanics. <i>Philosophical Magazine</i> , 2013 , 93, 3893-3906	1.6	4	
46	Processing and Properties of Ni-Based Bulk Metallic Glass via Spark Plasma Sintering of Pulverized Amorphous Ribbons. <i>MRS Advances</i> , 2017 , 2, 3815-3820	0.7	4	
45	Effects of load ratio, R, and test temperature on high cycle fatigue behavior of nano-structured AlBYBNiX alloy composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 558, 211-216	5.3	4	
44	Resistance curve behavior of polycrystalline niobium failing via cleavage. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2004 , 366, 56-65	5.3	4	
43	FORGING/FORMING SIMULATION STUDIES ON A UNIQUE, HIGH CAPACITY DEFORMATION SIMULATOR APPARATUS. <i>Materials and Manufacturing Processes</i> , 2002 , 17, 737-764	4.1	4	
42	Toughening Mechanisms in Al/Al-SiC Laminated Metal Composites. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 434, 205		4	
41	In situ fracture monitoring of plasma-sprayed MoSi2-Ta composites. <i>Journal of Materials Science</i> , 1993 , 28, 4023-4027	4.3	4	
40	Fracture toughness of cast and extruded Al6061/15%Al2O3p metal matrix composites. <i>Australian Journal of Mechanical Engineering</i> , 2020 , 18, S37-S45	1	4	
39	The evolution and effects of second phase particles during hot extrusion and re-extrusion of a NiTi shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 1145-1151	5.7	4	
38	Effects of Post-processing on Microstructure and Mechanical Properties of SLM-Processed IN-718. <i>Minerals, Metals and Materials Series</i> , 2018 , 515-526	0.3	4	
37	Estimation of environment-induced crack growth rate as a function of stress intensity factors generated during slow strain rate testing of aluminum alloys. <i>Corrosion Reviews</i> , 2019 , 37, 499-506	3.2	3	
36	4.4 Fracture Toughness and Fatigue of Particulate Metal Matrix Composites 2018 , 86-136		3	
35	Fracture Toughness of Amorphous Metals and Composites. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 754, 1		3	
34	Effect of Reinforcement Size on Hydrostatic Extrusion of X2080/SiC/20p Composite 1995 ,		3	

33	Processing and Properties of Nb5Si3/Nb Laminates. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 350, 285		3
32	Effects of Superposed Hydrostatic Stress on the Elastoplastic Behavior of Two-Phase Composites. Journal of Composite Materials, 1992 , 26, 1945-1967	2.7	3
31	Effects of Pressure on the Flow and Fracture of Polycrystalline NiAl. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 288, 555		3
30	Effect of Processing on the High Temperature Mechanical Properties of MoSi2. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 288, 829		3
29	Strength and Toughness of Composite Materials Based on Nickel Aluminide Matrices. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 133, 603		3
28	MICROSTRUCTURAL EFFECTS ON THE CLEAVAGE FRACTURE STRESS IN FULLY PEARLITIC 1080 STEEL 1984 , 1515-1522		3
27	Microstructure, Texture and Mechanical Properties of the 14YWT Nanostructured Ferritic Alloy NFA-1. <i>Minerals, Metals and Materials Series</i> , 2017 , 43-54	0.3	3
26	Effects of Ductile Phase Additions on the Fracture Behavior and Toughness of DRA Composites. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 434, 213		2
25	Stress corrosion cracking of discontinuously reinforced aluminium (DRA) alloy 2014 during slow strain rate testing. <i>Journal of Materials Science Letters</i> , 1996 , 15, 490-493		2
24	Scanning acoustic microscopy: The effects of crystal orientation, deformation, and fracture on acoustic contrast in NiAl. <i>Scripta Metallurgica Et Materialia</i> , 1993 , 28, 575-580		2
23	Effects of Processing on the Properties of A356 Al-20 vol.% SiCp and AZ91 Mg-20 vol.% SiCp Composites 1993 ,		2
22	Forging of Discontinuously Reinforced Aluminum Composites 2005 , 366-373		2
21	Microstructural and micro-mechanical analysis of 14YWT nanostructured Ferritic alloy after varying thermo-mechanical processing paths into tubing. <i>Materials Characterization</i> , 2021 , 171, 110744	3.9	2
20	An improved method for calculation of elastic constants of metallic glasses. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2015 , 634, 183-187	5.3	1
19	Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASAE High Temperature High Speed Turbine Seal Test Rig. <i>Journal of Engineering for Gas Turbines and Power</i> , 2009 , 131,	1.7	1
18	Putting the heat on nano-composite aluminium alloys. <i>Metal Powder Report</i> , 2009 , 64, 28-34	2	1
17	Effects of Annealing on Dynamic Behavior of a Bulk Metallic Glass 2005 , 131		1
16	Effects of Superimposed Pressure on Flow and Fracture of Two Bulk Amorphous Metals. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 754, 1		1

LIST OF PUBLICATIONS

15	Effects of Environmental Exposure on Ductile-Phase Toughening in Niobium Silicide-Niobium Composites. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 322, 503		1
14	The Temperature and Strain Rate Dependence of the Flow Stress in MoSi2 Single Crystals. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 322, 21		1
13	Fracture Toughness and the Effects of Stress State on Fracture of Nickel Aluminides. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 186, 341		1
12	Integrated Computational Materials Engineering of Gamma Titanium Aluminides for Aerospace Applications. <i>MATEC Web of Conferences</i> , 2020 , 321, 08002	0.3	1
11	Fracture and Fatigue of Niobium Silicide Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1128, 70101		
10	Effects of Annealing and Annealing with Pressure on Devitrification of Al87Ni7Gd6. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 754, 1		
9	Hardness Indentation Studies On Metallic Glasses. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 754, 1		
8	Fracture and Fatigue of Refractory Metal Intermetallic Composites. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 552, 1		
7	On the Kinetics of Nb5Si3 Compound Formation. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 288, 853		
6	Notch Effects on Room Temperature Tensile and Bend Properties of Ni3Al and Ni3Al+B. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 133, 523		
5	Hydrostatic Extrusion of Metals and Alloys 2005 , 440-447		
4	Plasma Focused Ion Beam Serial Sectioning as a Technique to Characterize Nonmetallic Inclusions in Superelastic Nitinol Fine Wires. <i>Microscopy and Microanalysis</i> , 2020 , 26, 1088-1099	0.5	
3	MICROSTRUCTURAL EFFECTS ON FRACTURE MICROMECHANISMS IN LIGHTWEIGHT METAL MATRIX COMPOSITES 1989 , 23-31		
2	Temperature and Loading Rate Effects on Toughness of In-Situ Niobium Silicide [Niobium Composites 1996 , 535-544		
1	Flex Bending Fatigue of Dental Archwires. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1742-1743	0.5	