John J Lewandowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018509/publications.pdf

Version: 2024-02-01

250 papers 14,024 citations

²⁶⁵⁶⁷ 56
h-index

23472 111 g-index

256 all docs

256 docs citations

256 times ranked

6714 citing authors

#	Article	IF	CITATIONS
1	Metal Additive Manufacturing: A Review of Mechanical Properties. Annual Review of Materials Research, 2016, 46, 151-186.	4.3	1,174
2	Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 2005, 85, 77-87.	0.5	1,061
3	Temperature rise at shear bands in metallic glasses. Nature Materials, 2006, 5, 15-18.	13.3	810
4	Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Physical Review Letters, 2005, 94, 125510.	2.9	492
5	Overview of Materials Qualification Needs for Metal Additive Manufacturing. Jom, 2016, 68, 747-764.	0.9	427
6	High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia, 2017, 123, 285-294.	3.8	378
7	Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107, 241-255.	2.6	357
8	Mechanical Properties of Bulk Metallic Glasses. MRS Bulletin, 2007, 32, 635-638.	1.7	328
9	Mechanical behaviour of laminated metal composites. International Materials Reviews, 1996, 41, 169-197.	9.4	294
10	Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1573-1583.	1.4	289
11	Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. Jom, 2017, 69, 439-455.	0.9	279
12	Ultrahigh-Temperature Nb-Silicide-Based Composites. MRS Bulletin, 2003, 28, 646-653.	1.7	277
13	Crack initiation and growth toughness of an aluminum metal-matrix composite. Acta Metallurgica Et Materialia, 1990, 38, 489-496.	1.9	230
14	Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998, 38, 1811-1817.	2.6	221
15	Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. International Journal of Fatigue, 2017, 94, 263-287.	2.8	191
16	Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research, 2005, 20, 2307-2313.	1.2	187
17	Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3427-3441.	0.8	165
18	Carbon Additions to Molybdenum Disilicide: Improved High-Temperature Mechanical Properties. Journal of the American Ceramic Society, 1991, 74, 2704-2706.	1.9	162

#	Article	IF	CITATIONS
19	Effects of heat treatment and reinforcement size. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 2531-2543.	1.4	147
20	Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy. Scripta Materialia, 1999, 41, 19-24.	2.6	146
21	Intrinsic and extrinsic toughening of metallic glasses. Scripta Materialia, 2006, 54, 337-341.	2.6	141
22	Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials. International Materials Reviews, 1998, 43, 145-187.	9.4	129
23	Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys. Jom, 2015, 67, 2288-2295.	0.9	129
24	Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 1769-1786.	1.4	113
25	Tough Fe-based bulk metallic glasses. Applied Physics Letters, 2008, 92, .	1.5	113
26	Toughness, extrinsic effects and Poisson's ratio of bulk metallic glasses. Acta Materialia, 2012, 60, 4800-4809.	3.8	110
27	Effects of Annealing and Changes in Stress State on Fracture Toughness of Bulk Metallic Glass. Materials Transactions, 2001, 42, 633-637.	0.4	104
28	Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Materialia, 2010, 58, 1708-1720.	3.8	104
29	Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb. Journal of Alloys and Compounds, 2017, 729, 1118-1135.	2.8	102
30	Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 220, 85-92.	2.6	97
31	Dynamic deformation behavior of Alî—'Znî—'Mgî—'Cu alloy matrix composites reinforced with 20 Vol.% SiC. Acta Metallurgica Et Materialia, 1993, 41, 2337-2351.	1.9	93
32	Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness. Acta Metallurgica Et Materialia, 1995, 43, 1955-1967.	1.9	90
33	Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V. Jom, 2015, 67, 597-607.	0.9	88
34	Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics, 2000, 8, 487-492.	1.8	87
35	Local temperature rises during mechanical testing of metallic glasses. Journal of Materials Research, 2007, 22, 419-427.	1.2	87
36	Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1992, 150, 179-186.	2.6	83

#	Article	IF	CITATIONS
37	Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 461-472.	1.4	81
38	The mechanism of mechanical alloying of MoSi ₂ . Journal of Materials Research, 1993, 8, 1311-1316.	1.2	80
39	Segregation to SiC/Al interfaces in Al based metal matrix composites. Scripta Metallurgica Et Materialia, 1990, 24, 1483-1487.	1.0	79
40	Effects of thickness and orientation on the small scale fracture behaviour of additively manufactured Ti-6Al-4V. Materials Characterization, 2018, 143, 94-109.	1.9	79
41	Observations on the effects of particulate size and superposed pressure on deformation of metal matrix composites. Scripta Metallurgica Et Materialia, 1991, 25, 21-26.	1.0	77
42	Microstructure-property relationships in pearlitic eutectoid and hypereutectoid carbon steels. Jom, 2002, 54, 25-30.	0.9	75
43	Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Materialia, 2004, 51, 151-154.	2.6	72
44	Fatigue behavior of high-entropy alloys: A review. Science China Technological Sciences, 2018, 61, 168-178.	2.0	71
45	Micro- and macrostructural factors in DRA fracture resistance. Jom, 1993, 45, 30-35.	0.9	70
46	Processing and properties of Nb5Si3 and tough Nb5Si3/Nb laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 155, 59-65.	2.6	68
47	On the slip systems in MoSi2. Acta Metallurgica Et Materialia, 1992, 40, 3159-3165.	1.9	65
48	Micromechanisms of cleavage fracture in fully pearlitic microstructures. Acta Metallurgica, 1987, 35, 1453-1462.	2.1	64
49	The effects of superimposed hydrostatic pressure on deformation and fracture: Part II. Particulate-reinforced 6061 composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 609-615.	1.4	64
50	Effects of carbon additions on the high temperature mechanical properties of molybdenum disilicide. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 155, 159-163.	2.6	62
51	Loading rate and test temperature effects on fracture ofln Situ niobium silicide-niobium composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3292-3306.	1.1	62
52	Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. Journal of Materials Research, 2007, 22, 389-401.	1.2	61
53	Spall strength and Hugoniot elastic limit of a zirconium-based bulk metallic glass under planar shock compression. Journal of Materials Research, 2007, 22, 402-411.	1.2	61
54	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, 9, 19.	1.8	59

#	Article	IF	CITATIONS
55	Effects of aging condition on the fracture toughness of 2XXX and 7XXX series aluminum alloy composites. Scripta Metallurgica, 1989, 23, 301-304.	1.2	58
56	Delamination study using four-point bending of bilayers. Journal of Materials Science, 1997, 32, 3851-3856.	1.7	58
57	Laminated composites with improved toughness. Scripta Metallurgica Et Materialia, 1990, 24, 1515-1519.	1.0	56
58	Effects of Casting Conditions and Deformation Processing on A356 Aluminum and A356-20 Vol. % SiC Composites. Journal of Composite Materials, 1992, 26, 2076-2106.	1.2	56
59	Effects of microstructure of the behavior of an aluminum alloy and an aluminum matrix composite tested under low levels of superimposed hydrostatic pressure. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 2409-2417.	1.4	54
60	Pressure effects on metallic glasses. Acta Materialia, 2010, 58, 1026-1036.	3.8	53
61	Sample size and preparation effects on the tensile ductility of Pd-based metallic glass nanowires. Acta Materialia, 2015, 87, 1-7.	3.8	53
62	Effects of layer thickness on impact toughness of Al/AlSiCp laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 183, 59-67.	2.6	52
63	Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Philosophical Magazine Letters, 2008, 88, 853-861.	0.5	51
64	Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. Journal of Nuclear Materials, 2017, 486, 86-95.	1.3	51
65	Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scripta Materialia, 2009, 60, 1027-1030.	2.6	49
66	Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys. Acta Materialia, 2017, 134, 116-127.	3.8	49
67	Effects of test temperature, grain size, and alloy additions on the cleavage fracture stress of polycrystalline niobium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 389-399.	1.1	45
68	Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti–48Al–2Nb–2Cr. Intermetallics, 2015, 57, 73-82.	1.8	45
69	Fracture toughness of monolithic nickel aluminide intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 149, 143-151.	2.6	44
70	Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass. Applied Physics Letters, 2006, 89, 181911.	1.5	44
71	Effects of impurity segregation on sustained load cracking of Cr-1Mo steels—I. Crack initiation. Acta Metallurgica, 1987, 35, 593-608.	2.1	43
72	Unconstrained and constrained tensile flow and fracture behavior of an Nb-1.24 At. Pct Si alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1767-1776.	1.1	42

#	Article	IF	CITATIONS
73	The effects of hydrostatic pressure on the mechanical behavior of NiAl. Scripta Metallurgica Et Materialia, 1991, 25, 2017-2022.	1.0	41
74	In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope. Scripta Metallurgica, 1989, 23, 1801-1804.	1.2	40
75	Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). International Journal of Fatigue, 2004, 26, 305-309.	2.8	40
76	Improved understanding of environment-induced cracking (EIC) of sensitized 5XXX series aluminium alloys. Materials Science & Science & Science & Structural Materials: Properties, Microstructure and Processing, 2017, 682, 613-621.	2.6	40
77	Design of Inserts for Split-Hopkinson Pressure Bar Testing of Low Strain-to-Failure Materials. Experimental Mechanics, 2009, 49, 479-490.	1.1	38
78	Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite. International Journal of Fracture, 1989, 40, R31-R34.	1.1	36
79	Quantitative evaluation of α-Al nano-particles in amorphous Al87Ni7Gd6––comparison of XRD, DSC, and TEM. Scripta Materialia, 2003, 48, 1537-1541.	2.6	36
80	Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. Journal of Applied Physics, 2008, 104, .	1.1	36
81	Environmental effects on ductile-phase toughening in Nb5Si3-Nb composites. Jom, 1992, 44, 36-41.	0.9	35
82	Effects of Test Temperature and Loading Conditions on the Tensile Properties of a Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1922-1934.	1.1	35
83	Effects of surface laser treatments on microstructure, tension, and fatigue behavior of AISI 316LVM biomedical wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 101-113.	2.6	35
84	The effects of superimposed hydrostatic pressure on deformation and fracture: Part I. Monolithic 6061 aluminum. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 601-608.	1.4	33
85	Effects of annealing at high pressure on structure and mechanical properties of Al87Ni7Gd6 metallic glass. Intermetallics, 2002, 10, 1099-1103.	1.8	32
86	Effects of particulate volume fraction on cyclic stress response and fatigue life of AZ91D magnesium alloy metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 188-194.	2.6	32
87	Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys. Materials Science & Droperties, Microstructure and Processing, 2016, 661, 222-232.	2.6	32
88	Influence of thickness in the fracture resistance of conventional and laminated DRA materials. Scripta Metallurgica Et Materialia, 1994, 31, 191-195.	1.0	31
89	Increased Toughness of Zirconium-Based Bulk Metallic Glasses Tested under Mixed Mode Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 149-158.	1.1	31
90	Laminated nanostructure composites with improved bend ductility and toughness. Scripta Materialia, 2009, 61, 1072-1074.	2.6	30

#	Article	IF	CITATIONS
91	Pressure-induced dislocations and subsequent flow in NiAl. Acta Metallurgica Et Materialia, 1993, 41, 485-496.	1.9	29
92	Effects of test temperature, grain size, and alloy additions on the low-temperature fracture toughness of polycrystalline niobium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2297-2307.	1.1	29
93	Tension and fatigue behavior of Al-2124A/SiC-particulate metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 770, 138518.	2.6	29
94	Mechanical behaviour of laminated metal composites. International Materials Reviews, 1996, 41, 169-197.	9.4	29
95	Effects of superimposed hydrostatic pressure on the fracture properties of particulate reinforced metal matrix composites. Scripta Metallurgica, 1989, 23, 253-256.	1.2	28
96	Effects of Changes in Test Temperature and Loading Conditions on Fracture Toughness of a Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2077-2085.	1.1	28
97	Microstructural effects on tension behavior of Cu–15Ni–8Sn sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 769-781.	2.6	28
98	Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys. Corrosion Science, 2018, 138, 219-241.	3.0	28
99	Yielding and work hardening effects in notched bend bars. Journal of the Mechanics and Physics of Solids, 1986, 34, 433-454.	2.3	27
100	The decrease in yield strength in NiAl due to hydrostatic pressure. Scripta Metallurgica Et Materialia, 1992, 26, 1733-1736.	1.0	27
101	Crack bridging in a laminated metal matrix composite. Scripta Metallurgica Et Materialia, 1994, 31, 607-612.	1.0	27
102	The fracture resistance of layered DRA materials: Influence of laminae thickness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 229, 1-9.	2.6	26
103	Delamination of a sensitized commercial Al–Mg alloy during fatigue crack growth. Scripta Materialia, 2010, 63, 799-802.	2.6	26
104	Model experiments to mimic fracture surface features in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2207-2213.	2.6	26
105	Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials. International Materials Reviews, 1998, 43, 145-187.	9.4	26
106	Notch effects on tensile behavior of Ni3Al and Ni3Al + B. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 1247-1255.	1.4	25
107	Laminated composites with improved bend ductility and toughness. Journal of Materials Science Letters, 1991, 10, 461-463.	0.5	25
108	Effects of R-ratio on the fatigue crack growth of Nb-Si(ss) and Nb-10Si In Situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1749-1757.	1.1	25

#	Article	IF	Citations
109	Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity of an Iron-Based Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1314-1323.	1.1	25
110	Fatigue and fracture of wires and cables for biomedical applications. International Materials Reviews, 2016, 61, 231-314.	9.4	25
111	Fracture characteristics of an Al–Si–Mg model composite system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 172, 63-69.	2.6	24
112	The effects of interstitial content, heat treatment, and prestrain on the tensile properties of NiAl. Materials Science & Discretiang A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 179-185.	2.6	24
113	Inertial stabilization of buckling at high rates of loading and low test temperatures: Implications for dynamic crush resistance of aluminum-alloy-based sandwich plates with lattice core. Acta Materialia, 2007, 55, 2829-2840.	3.8	24
114	Anisotropy of corrosion and environmental cracking in AA5083-H128 Al-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 367-379.	2.6	24
115	Effects of impurity segregation and test environment on sustained load cracking of steel—II. Crack propagation. Acta Metallurgica, 1987, 35, 2081-2090.	2.1	23
116	Lead-induced solid metal embrittlement of an excess silicon Alâ^'Mgâ^'Si alloy at temperatures of â^'4°C to 80°C. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 1679-1689.	1.4	23
117	Effects of lamination and changes in layer thickness on fatigue-crack propagation of lightweight laminated metal composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 45-52.	1.1	23
118	Matrix effects on the ductility of aluminium-based composites deformed under hydrostatic pressure. Journal of Materials Science Letters, 1989, 8, 1447-1448.	0.5	22
119	{103}⟨331⟩ slip in MoSi2. Philosophical Magazine Letters, 1993, 67, 313-321.	0.5	22
120	Spall strength of a zirconium-based bulk metallic glass under shock-induced compression-and-shear loading. Mechanics of Materials, 2009, 41, 886-897.	1.7	22
121	Combined Mode I-Mode III Fracture Toughness of a Particulate Reinforced Metal-Matrix Composite. Journal of Composite Materials, 1991, 25, 831-841.	1.2	21
122	In-situ scanning electron microscope studies of crack growth in an aluminum metal-matrix composite. Scripta Metallurgica Et Materialia, 1990, 24, 2357-2362.	1.0	20
123	Interface Effects on the Quasi-Static and Impact Toughness of Discontinuously Reinforced Aluminum Laminates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1993-2006.	1.1	20
124	Flex bending fatigue testing of wires, foils, and ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 601, 123-130.	2.6	20
125	Evolution of fatigue crack growth and fracture behavior in gamma titanium aluminide Ti-43.5Al-4Nb-1Mo-0.1B (TNM) forgings. International Journal of Fatigue, 2018, 111, 54-69.	2.8	20
126	Through-thickness inhomogeneity of environmentally assisted cracking (EAC) in AA5083-H128 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 34-48.	2.6	20

#	Article	IF	Citations
127	Intergranular fracture of Alî—,Li alloys: Effects of aging and impurities. Materials Science & Description of Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 123, 219-227.	2.6	19
128	Fatigue coaxing experiments on a Zr-based bulk-metallic glass. Scripta Materialia, 2010, 62, 481-484.	2.6	19
129	Mathematical modeling and mechanical and histopathological testing of porous prosthetic pylon for direct skeletal attachment. Journal of Rehabilitation Research and Development, 2009, 46, 315.	1.6	19
130	Effects of lead on the sustained-load cracking of Alî—,Mgî—,Si at ambient temperatures. Materials Science and Engineering, 1987, 96, 185-195.	0.1	18
131	Effects of reinforcement size and distribution on fracture toughness of composite nickel aluminide intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 158, 31-45.	2.6	18
132	The effects of reinforcement additions and heat treatment on the evolution of the poisson ratio during straining of discontinuously reinforced aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2911-2921.	1.1	18
133	Fracture and Fatigue of Particulate MMCs. , 2000, , 151-187.		18
134	Microstructural effects on tension and fatigue behavior of Cu–15Ni–8Sn sheet. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 137-146.	2.6	18
135	Shear yield and flow behavior of a zirconium-based bulk metallic glass. Mechanics of Materials, 2010, 42, 248-255.	1.7	18
136	Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts. Metals, 2020, 10, 1340.	1.0	18
137	Effects of Annealing and Pressure on Devitrification and Mechanical Properties of Amorphous Al87Ni7Gd6. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1935-1941.	1.1	17
138	Effects of microstructure on high strain rate deformation and flow behaviour of Al–Mg–Si alloy (AA) Tj ETQq0 Technology, 2011, 27, 13-20.	0 0 0 rgBT 0.8	/Overlock 10 17
139	Poisson ratio measurements for an al-based metal matrix composite during elastic and plastic deformation. Scripta Metallurgica Et Materialia, 1993, 29, 199-204.	1.0	16
140	Enhanced fracture resistance in layered discontinuously reinforced aluminium. Materials Science and Technology, 1996, 12, 1001-1006.	0.8	16
141	Tension and fatigue behavior of 316LVM $1 ilde{A}$ —7 multi-strand cables used as implantable electrodes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 447-454.	2.6	16
142	Stress-State Effects on the Fracture of a Zr-Ti-Ni-Cu-Be Bulk Amorphous Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1758-1766.	1.1	16
143	Pre-exposure embrittlement of a commercial Al-Mg-Mn alloy, AA5083-H131. Corrosion Reviews, 2017, 35, 275-290.	1.0	16
144	Effects of build orientation and sample geometry on the mechanical response of miniature CP-Ti Grade 2 strut samples manufactured by laser powder bed fusion. Additive Manufacturing, 2020, 35, 101403.	1.7	16

#	Article	IF	CITATIONS
145	Interfacial fracture toughness measurement using indentation. Journal of Materials Science, 1994, 29, 4022-4026.	1.7	15
146	Flow and fracture of bimaterial systems based on aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3937-3947.	1.1	15
147	Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (K) Tj ETQq1 Materials Science, 2003, 34, 967-978.	1 0.78431 1.1	.4 rgBT /Over 15
148	Effects of microstructural characteristics on mechanical properties of open-cell nickel foams. Materials Science and Technology, 2005, 21, 1355-1358.	0.8	15
149	Effects of Changes in Notch Radius and Test Temperature on the Toughness of a Nano-crystalline Aluminum Alloy Composite Produced via Extrusion of Amorphous Aluminum Alloy Powders. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497. 212-215.	2.6	15
150	A Damage-tolerant Bulk Metallic Glass at Liquid-nitrogen Temperature. Journal of Materials Science and Technology, 2014, 30, 627-630.	5.6	15
151	Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance. Advanced Engineering Materials, 2015, 17, 620-625.	1.6	15
152	Microstructural heterogeneity and texture of as-received, vacuum arc-cast, extruded, and re-extruded NiTi shape memory alloy. Journal of Alloys and Compounds, 2017, 712, 494-509.	2.8	15
153	Dynamic Fracture of a Zr-based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4644-4653.	1.1	14
154	Yield point behavior in NiAl. Scripta Metallurgica Et Materialia, 1993, 29, 1309-1312.	1.0	13
155	Fatigue and fracture of porous steels and Cu-infiltrated porous steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 325-334.	1.1	13
156	Tension and fatigue behavior of silver-cored composite multi-strand cables used as implantable cables and electrodes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 191-198.	2.6	13
157	Pressure and temperature effects on tensile strength andplasticity of metallic glasses. Mechanics of Materials, 2013, 67, 86-93.	1.7	13
158	Environmentally induced crack (EIC) initiation, propagation, and failure: A 3D in-situ time-lapse study of AA5083 H131. Corrosion Science, 2020, 174, 108834.	3.0	13
159	Microstructural Effects on Ductile Phase Toughening of Nb-Nb Silicide Composites. Materials Research Society Symposia Proceedings, 1988, 120, 103.	0.1	12
160	Deformation texture of hydrostatically extruded polycrystalline NiAl. Scripta Metallurgica Et Materialia, 1993, 29, 1651-1654.	1.0	12
161	Delamination of Sensitized Al-Mg Alloy During Fatigue Crack Growth in Room Temperature Air. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3952-3956.	1.1	12
162	Effects of Composition Changes on Strength, Bend Ductility, Toughness, and Flex-Bending Fatigue of Iron-Based Metallic Glass Ribbons. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2697-2705.	1.1	12

#	Article	IF	CITATIONS
163	Weibull modulus of hardness, bend strength, and tensile strength of Niâ^'Taâ^'Coâ^'X metallic glass ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 176-182.	2.6	12
164	Initiation and short crack growth behaviour of environmentally induced cracks in AA5083 H131 investigated across time and length scales. Corrosion Reviews, 2019, 37, 469-481.	1.0	12
165	Outer medium effects and fracture nucleation sites in model experiments to mimic fracture surface features of metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 259-264.	2.6	11
166	Fatigue crack growth and fracture behavior of as-cast Ti-43.5Al-4Nb-1Mo-0.1B (TNM) compared to Ti-48Al-2Nb-2Cr (4822). Intermetallics, 2017, 91, 158-168.	1.8	11
167	Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. , 0, .		11
168	Microstructural evolution in an Al-Zn-Mg-Cu alloy-20 vol. % SiC composite shock-loaded to 5 GPa. Scripta Metallurgica Et Materialia, 1992, 27, 431-436.	1.0	10
169	Properties of monolithic and composite NiAl processed by hydrostatic extrusion and vacuum hot-pressing. Composites Science and Technology, 1994, 52, 163-172.	3.8	10
170	The influence of hydrostatic pressure on fracture of single-crystal and polycrystalline NiAl. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 1457-1470.	1.1	10
171	Observations of static strain-aging in polycrystalline NiAl. Intermetallics, 1996, 4, 533-542.	1.8	10
172	Effects of dislocation substructure on strength and toughness in polycrystalline NiAI processed via low-temperature hydrostatic extrusion. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 643-656.	0.8	10
173	Pressure effects on flow and fracture of Be-Al alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3555-3564.	1.1	10
174	Effects of processing conditions and test temperature on fatigue crack growth and fracture toughness of Beâ€"Al metal matrix composites. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 215-228.	2.6	10
175	Effects of changes in test temperature on fatigue crack propagation of Al6090/SiCp-Al 6013 laminated metal composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2291-2303.	1.1	10
176	Effects of Changes in Chemistry and Testing Temperature on Mechanical Behavior of Al-Based Amorphous Alloy Ribbons. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2269-2275.	1.1	10
177	Failure Analysis of Cast Iron Trunk Main in Cleveland, Ohio. Journal of Failure Analysis and Prevention, 2012, 12, 217-236.	0.5	10
178	Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7XXX alloy during slow strain rate testing. Scripta Metallurgica Et Materialia, 1995, 33, 1393-1399.	1.0	9
179	Effects of changes in temperature on fatigue crack growth of adhesively bonded Al 2080/SiC/20p-2080 Al laminated composites. Journal of Materials Science, 2004, 39, 3063-3067.	1.7	9
180	High cycle fatigue behavior of a nanostructured composite produced via extrusion of amorphous Al89Gd7Ni3Fe1 alloy powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 202-207.	2.6	9

#	Article	IF	CITATIONS
181	Chemical stability of titanium diboride reinforcement in nickel aluminide matrices. Journal of Materials Science, 1993, 28, 3911-3922.	1.7	8
182	Strength differential measurements in IN 718: Effects of superimposed pressure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 1736-1739.	1.1	8
183	Three-dimensional imaging of materials by microtomography. Materials Science and Technology, 2006, 22, 1009-1010.	0.8	8
184	Effects of changes in strain rate and test temperature on Mg85Ca5Cu10 metallic glass ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2214-2221.	2.6	8
185	First-principles calculation of elastic moduli of early-late transition metal alloys. Physical Review B, 2014, 89, .	1.1	8
186	Grain orientation effects on delamination during fatigue of a sensitized Al–Mg alloy. Philosophical Magazine Letters, 2015, 95, 526-533.	0.5	8
187	The evolution and effects of second phase particles during hot extrusion and re-extrusion of a NiTi shape memory alloy. Journal of Alloys and Compounds, 2018, 735, 1145-1151.	2.8	8
188	Fatigue crack growth behavior of Nb-10Si in-situ composites. Scripta Materialia, 1998, 38, 1775-1780.	2.6	7
189	Sustained-load crack growth of hydrogen-charged surface-hardened 316L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 43-50.	2.6	7
190	Effects of Changes in Chemistry on Flex Bending Fatigue Behavior of Al-Based Amorphous Alloy Ribbons. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2687-2696.	1.1	7
191	The effects of changes in test temperature and loading conditions on fracture toughness of a \hat{l}^2 toughened Zr-based bulk metallic glass composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 540, 97-101.	2.6	7
192	Degradation of metallic materials studied by correlative tomography. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012001.	0.3	7
193	Effects of Post-processing on Microstructure and Mechanical Properties of SLM-Processed IN-718. Minerals, Metals and Materials Series, 2018, , 515-526.	0.3	7
194	Toughening Mechanisms in Al/Al-SiC Laminated Metal Composites. Materials Research Society Symposia Proceedings, 1996, 434, 205.	0.1	6
195	Effects of high temperature and thermal exposure on fatigue crack propagation of laminated metal composites. Materials Science and Technology, 2007, 23, 1505-1512.	0.8	6
196	Microstructural effects on crack path selection in bending and fatigue in a Nb–19Si–5Cr–3.5Hf–24Ti–0.75Sn–1W alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1489-1500.	2.6	6
197	The effect of mixed mode I/II on the fracture toughness and fracture behavior of nano-structured metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 897-901.	2.6	6
198	Deformation Rate and Sensitization Effects on Environmentally Assisted Cracking of Al-Mg Naval alloys. Corrosion, 0 , , .	0.5	6

#	Article	IF	Citations
199	Estimation of environment-induced crack growth rate as a function of stress intensity factors generated during slow strain rate testing of aluminum alloys. Corrosion Reviews, 2019, 37, 499-506.	1.0	6
200	The nucleation of high temperature brittle intergranular fracture in 2.25cr-1mo steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 3005-3011.	1.4	5
201	Loading Rate Effects on Ductile-Phase Toughening in In-Situ Niobium Silicide-Niobium Composites. Materials Research Society Symposia Proceedings, 1990, 213, 1001.	0.1	5
202	Resistance curve behavior of polycrystalline niobium failing via cleavage. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 366, 56-65.	2.6	5
203	Effects of microstructural changes, loading conditions and test temperature on toughness of fully pearlitic eutectoid steel used in transportation industry. Materials Science and Technology, 2009, 25, 369-378.	0.8	5
204	Effects of load ratio, R, and test temperature on high cycle fatigue behavior of nano-structured Al–4Y–4Ni–X alloy composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 211-216.	2.6	5
205	Effects of mixed mode loading on the fracture toughness of bulk metallic glass/W composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 413-417.	2.6	5
206	Modern fracture mechanics. Philosophical Magazine, 2013, 93, 3893-3906.	0.7	5
207	Fracture toughness of cast and extruded Al6061/15%Al ₂ O ₃ p metal matrix composites. Australian Journal of Mechanical Engineering, 2020, 18, S37-S45.	1.5	5
208	Microstructural and micro-mechanical analysis of 14YWT nanostructured Ferritic alloy after varying thermo-mechanical processing paths into tubing. Materials Characterization, 2021, 171, 110744.	1.9	5
209	Fracture and Fatigue of DRA Composites. , 1996, , 895-904.		5
210	Effects of Superposed Hydrostatic Stress on the Elastoplastic Behavior of Two-Phase Composites. Journal of Composite Materials, 1992, 26, 1945-1967.	1.2	4
211	Effects of Pressure on the Flow and Fracture of Polycrystalline NiAl. Materials Research Society Symposia Proceedings, 1992, 288, 555.	0.1	4
212	Effect of Processing on the High Temperature Mechanical Properties of Mosi2. Materials Research Society Symposia Proceedings, 1992, 288, 829.	0.1	4
213	In situ fracture monitoring of plasma-sprayed MoSi2-Ta composites. Journal of Materials Science, 1993, 28, 4023-4027.	1.7	4
214	Effects of Ductile Phase Additions on the Fracture Behavior and Toughness of DRA Composites. Materials Research Society Symposia Proceedings, 1996, 434, 213.	0.1	4
215	FORGING/FORMING SIMULATION STUDIES ON A UNIQUE, HIGH CAPACITY DEFORMATION SIMULATOR APPARATUS. Materials and Manufacturing Processes, 2002, 17, 737-764.	2.7	4
216	Processing and Properties of Ni-Based Bulk Metallic Glass via Spark Plasma Sintering of Pulverized Amorphous Ribbons. MRS Advances, 2017, 2, 3815-3820.	0.5	4

#	Article	IF	CITATIONS
217	Anharmonic model for the elastic constants of bulk metallic glass across the glass transition. Physical Review B, 2018, 97, .	1.1	4
218	MICROSTRUCTURAL EFFECTS ON THE CLEAVAGE FRACTURE STRESS IN FULLY PEARLITIC 1080 STEEL. , 1984 , , $1515-1522$.		3
219	Strength and Toughness of Composite Materials Based on Nickel Aluminide Matrices. Materials Research Society Symposia Proceedings, 1988, 133, 603.	0.1	3
220	Processing and Properties of Nb5Si3/Nb Laminates. Materials Research Society Symposia Proceedings, 1994, 350, 285.	0.1	3
221	Effect of Reinforcement Size on Hydrostatic Extrusion of X2080/SiC/20p Composite. , 1995, , .		3
222	Stress corrosion cracking of discontinuously reinforced aluminium (DRA) alloy 2014 during slow strain rate testing. Journal of Materials Science Letters, 1996, 15, 490-493.	0.5	3
223	Fracture Toughness of Amorphous Metals and Composites. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	3
224	4.4 Fracture Toughness and Fatigue of Particulate Metal Matrix Composites., 2018,, 86-136.		3
225	Forging of Discontinuously Reinforced Aluminum Composites. , 2005, , 366-373.		3
226	Fracture Toughness and the Effects of Stress State on Fracture of Nickel Aluminides. Materials Research Society Symposia Proceedings, 1990, 186, 341.	0.1	2
227	Scanning acoustic microscopy: The effects of crystal orientation, deformation, and fracture on acoustic contrast in NiAl. Scripta Metallurgica Et Materialia, 1993, 28, 575-580.	1.0	2
228	Effects of Environmental Exposure on Ductile-Phase Toughening in Niobium Silicide-Niobium Composites. Materials Research Society Symposia Proceedings, 1993, 322, 503.	0.1	2
229	The Temperature and Strain Rate Dependence of the Flow Stress in MoSi2 Single Crystals. Materials Research Society Symposia Proceedings, 1993, 322, 21.	0.1	2
230	Effects of Processing on the Properties of A356 Al-20 vol.% SiCp and AZ91 Mg-20 vol.% SiCp Composites., 1993,,.		2
231	Effects of Annealing on Dynamic Behavior of a Bulk Metallic Glass. , 2005, , 131.		2
232	Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature High Speed Turbine Seal Test Rig. Journal of Engineering for Gas Turbines and Power, 2009, 131, .	0.5	2
233	Putting the heat on nano-composite aluminium alloys. Metal Powder Report, 2009, 64, 28-34.	0.3	2
234	The Use of Miniature Specimens to Determine Local Properties and Fracture Behavior of LPBF-Processed Inconel 718 in as-Deposited and Post-Treated States. Materials, 2022, 15, 4724.	1.3	2

#	Article	IF	CITATIONS
235	Effects of Superimposed Pressure on Flow and Fracture of Two Bulk Amorphous Metals. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	1
236	Hardness Indentation Studies On Metallic Glasses. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	1
237	An improved method for calculation of elastic constants of metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 183-187.	2.6	1
238	Hydrostatic Extrusion of Metals and Alloys. , 2005, , 440-447.		1
239	MICROSTRUCTURAL EFFECTS ON FRACTURE MICROMECHANISMS IN LIGHTWEIGHT METAL MATRIX COMPOSITES., 1989, , 23-31.		1
240	Integrated Computational Materials Engineering of Gamma Titanium Aluminides for Aerospace Applications. MATEC Web of Conferences, 2020, 321, 08002.	0.1	1
241	Notch Effects on Room Temperature Tensile and Bend Properties of Ni3Al and Ni3Al+B. Materials Research Society Symposia Proceedings, 1988, 133, 523.	0.1	0
242	On the Kinetics of Nb5Si3 Compound Formation. Materials Research Society Symposia Proceedings, 1992, 288, 853.	0.1	0
243	Fracture and Fatigue of Refractory Metal Intermetallic Composites. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	0
244	Effects of Annealing and Annealing with Pressure on Devitrification of Al87Ni7Gd6. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
245	Fracture and Fatigue of Niobium Silicide Alloys. Materials Research Society Symposia Proceedings, 2008, 1128, 70101.	0.1	0
246	Properties of Discontinuously Reinforced Metal Matrix: Composites and Laminates. , 2016, , .		0
247	Flex Bending Fatigue of Dental Archwires. Microscopy and Microanalysis, 2016, 22, 1742-1743.	0.2	0
248	STUDIES ON THE ADSORPTION PROPERTIES OF ION-EXCHANGED LOW SILICA X ZEOLITE. , 2003, , .		0
249	Temperature and Loading Rate Effects on Toughness of In-Situ Niobium Silicide — Niobium Composites. , 1996, , 535-544.		0
250	Plasma Focused Ion Beam Serial Sectioning as a Technique to Characterize Nonmetallic Inclusions in Superelastic Nitinol Fine Wires. Microscopy and Microanalysis, 2020, 26, 1088-1099.	0.2	0