Catherine Marie Breton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. Journal of Biogeography, 2006, 33, 1916-1928.	3.0	138
2	Cultivar Identification in Olive Based on RAPD Markers. Journal of the American Society for Horticultural Science, 2001, 126, 668-675.	1.0	93
3	The origins of the domestication of the olive tree. Comptes Rendus - Biologies, 2009, 332, 1059-1064.	0.2	90
4	Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: A case study in Tunisia. Scientia Horticulturae, 2008, 116, 280-290.	3.6	87
5	Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Science, 2008, 175, 524-532.	3.6	82
6	Comparative Study of Methods for DNA Preparation from Olive Oil Samples to Identify Cultivar SSR Alleles in Commercial Oil Samples:Â Possible Forensic Applications. Journal of Agricultural and Food Chemistry, 2004, 52, 531-537.	5.2	80
7	Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genetics Selection Evolution, 2001, 33, S251.	3.0	79
8	Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genetic Resources and Crop Evolution, 2009, 56, 393-403.	1.6	49
9	The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genetics and Genomes, 2014, 10, 1055-1067.	1.6	39
10	Taming the wild and â€~wilding' the tame: Tree breeding and dispersal in Australia and the Mediterranean. Plant Science, 2008, 175, 197-205.	3.6	37
11	New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. Comptes Rendus - Biologies, 2012, 335, 563-572.	0.2	34
12	Transcriptome Analysis of Sarracenia, an Insectivorous Plant. DNA Research, 2011, 18, 253-261.	3.4	28
13	Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. Annals of Botany, 2021, 127, 7-20.	2.9	27
14	Genetic Relationships between Cultivated and Wild Olive Trees (Olea Europaea L. Var. Europaea and) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
15	Potential of combining morphometry and ancient DNA information to investigate grapevine domestication. Vegetation History and Archaeobotany, 2017, 26, 345-356.	2.1	20
16	Filling the gaps in gene banks: Collecting, characterizing, and phenotyping wild banana relatives of Papua New Guinea. Crop Science, 2021, 61, 137-149.	1.8	19

17	Oil accumulation kinetic along ripening in four olive cultivars varying for fruit size. Oleagineux Corps Gras Lipides, 2009, 16, 58-64.	0.2	15

18Gene transfer from wild<i>Helianthus</i>to sunflower: topicalities and limits. Oleagineux Corps0.2150.215

CATHERINE MARIE BRETON

#	Article	IF	CITATIONS
19	Specific features in the olive self-incompatibility system: A method to decipher S-allele pairs based on fruit settings. Scientia Horticulturae, 2015, 181, 62-75.	3.6	15
20	A model based on S-allele dominance relationships to explain pseudo self-fertility of varieties in the olive tree. Euphytica, 2016, 210, 105-117.	1.2	14
21	Characterization of olive progenies derived from a Tunisian breeding program by morphological traits and SSR markers. Scientia Horticulturae, 2018, 236, 127-136.	3.6	12
22	Genetic diversity in Tunisian olive accessions and their relatedness with other Mediterranean olive genotypes. Scientia Horticulturae, 2008, 115, 416-419.	3.6	10
23	Reply to Saumitouâ€Laprade etÂal. (2017) "Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the selfâ€incompatibility system of <i>Olea europaea</i> L.â€: Eva:https://doi.org/10.1111/eva.12498. Evolutionary Applications, 2018, 11, 1465-1470.	3.1	9
24	Are olive cultivars distinguishable from oleaster trees based on morphology of drupes and pits, oil composition and microsatellite polymorphisms?. Acta Botanica Gallica, 2008, 155, 531-545.	0.9	8
25	Transfer of architectural traits from perennial Helianthus mollis Lam. to sunflower (H. annuus L.) and localisation of introgression. Euphytica, 2012, 186, 557-572.	1.2	8
26	From the Olive Flower to the Drupe: Flower Types, Pollination, Self and Inter-Compatibility and Fruit Set. , 2013, , .		7
27	A digital catalog of highâ€density markers for banana germplasm collections. Plants People Planet, 2022, 4, 61-67.	3.3	7
28	â€~Comment on Saumitou etÂal. (2017): Elucidation of the genetic architecture of selfâ€incompatibility in olive: evolutionary consequences and perspectives for orchard management'. Evolutionary Applications, 2017, 10, 855-859.	3.1	6
29	A Dual-Successive-Screen Model at Pollen/Stigma and Pollen Tube/Ovary Explaining Paradoxical Self-Incompatibility Diagnosis in the Olive Tree—An Interpretative Update of the Literature. Plants, 2021, 10, 1938.	3.5	6
30	Genetic and environmental features for oil composition in olive varieties. OCL - Oilseeds and Fats, Crops and Lipids, 2014, 21, D504.	1.4	3
31	The sporophytic self-incompatibility mating system is conserved in Olea europaea subsp. cuspidata and O. e. europaea. Euphytica, 2017, 213, 1.	1.2	3
32	Identification of olive pollen donor trees and pollinizers under controlled pollination environment using STR markers. Australian Journal of Crop Science, 2018, 12, 1566-1572.	0.3	2
33	Reply to comment on Breton et al.: "Taming the wild and â€~wilding' the tame: Tree breeding and dispersal in Australia and the Mediterranean― Plant Science, 2008, 175, 208-209.	3.6	1
34	Ten simple rules for switching from face-to-face to remote conference: An opportunity to estimate the reduction in GHG emissions. PLoS Computational Biology, 2021, 17, e1009321.	3.2	1
35	A Protocol for Detection of Large Chromosome Variations in Banana Using Next Generation Sequencing. , 2022, , 129-148.		1