Fu-min Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018334/publications.pdf Version: 2024-02-01

FULMIN LI

#	Article	IF	CITATIONS
1	Au core-PtAu alloy shell nanowires for formic acid electrolysis. Journal of Energy Chemistry, 2022, 65, 94-102.	12.9	117
2	Porous palladium phosphide nanotubes for formic acid electrooxidation. , 2022, 4, 283-293.		102
3	Interfacial Engineering Enhances the Electroactivity of Frame‣ike Concave RhCu Bimetallic Nanocubes for Nitrate Reduction. Advanced Energy Materials, 2022, 12, .	19.5	96
4	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	21.0	43
5	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	102
6	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	22
7	Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 1535-1543.	14.0	111
8	Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 271-278.	14.0	21
9	Porous cobalt carbonate hydroxide nanospheres towards oxygen evolution reaction. Chemical Engineering Journal, 2021, 417, 128066.	12.7	22
10	PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. Journal of Materials Chemistry A, 2021, 9, 8444-8451.	10.3	39
11	Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. ACS Applied Materials & Interfaces, 2021, 13, 4026-4033.	8.0	33
12	Bifunctional Palladium Hydride Nanodendrite Electrocatalysts for Hydrogen Evolution Integrated with Formate Oxidation. ACS Applied Materials & amp; Interfaces, 2021, 13, 13149-13157.	8.0	39
13	Functionalized Ultrafine Rhodium Nanoparticles on Graphene Aerogels for the Hydrogen Evolution Reaction. ChemElectroChem, 2021, 8, 1759-1765.	3.4	5
14	Bifunctional Pd@RhPd Core–Shell Nanodendrites for Methanol Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 35767-35776.	8.0	28
15	Ultrathin NiSe Nanosheets on Ni Foam for Efficient and Durable Hydrazine-Assisted Electrolytic Hydrogen Production. ACS Applied Materials & Interfaces, 2021, 13, 34457-34467.	8.0	49
16	Efficient Nitrate-to-Ammonia Electroreduction at Cobalt Phosphide Nanoshuttles. ACS Applied Materials & Interfaces, 2021, 13, 45521-45527.	8.0	33
17	Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution. Science Bulletin, 2021, 66, 2079-2089.	9.0	66
18	Holey cobalt oxyhydroxide nanosheets for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 3297-3302.	10.3	21

Fu-min Li

#	Article	IF	CITATIONS
19	Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. Journal of Colloid and Interface Science, 2020, 559, 143-151.	9.4	21
20	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	7.8	29
21	Hierarchical porous Rh nanosheets for methanol oxidation reaction. Applied Catalysis B: Environmental, 2020, 264, 118520.	20.2	92
22	Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Research, 2020, 13, 79-85.	10.4	83
23	Conductive Metal–Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 2020, 7, 2000012.	11.2	197
24	Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Applied Catalysis B: Environmental, 2020, 270, 118880.	20.2	151
25	Porous Pdâ€₽dO Nanotubes for Methanol Electrooxidation. Advanced Functional Materials, 2020, 30, 2000534.	14.9	138
26	Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2020, 12, 14064-14070.	8.0	91
27	Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. Journal of Energy Chemistry, 2020, 47, 234-240.	12.9	80
28	Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam. Nanoscale, 2020, 12, 11526-11535.	5.6	37
29	Selfâ€5upported FeP oMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 1590-1597.	3.3	6
30	Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 20658-20666.	10.3	123
31	Cyanogel auto-reduction induced synthesis of PdCo nanocubes on carbon nanobowls: a highly active electrocatalyst for ethanol electrooxidation. Nanoscale, 2019, 11, 13477-13483.	5.6	27
32	KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon, 2019, 153, 6-11.	10.3	69
33	Saltâ€Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small, 2019, 15, e1903500.	10.0	57
34	Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. Journal of Materials Chemistry A, 2019, 7, 21149-21156.	10.3	77
35	Rh nanoroses for isopropanol oxidation reaction. Applied Catalysis B: Environmental, 2019, 259, 118082.	20.2	44
36	Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5575-5582.	10.3	81

Fu-міn Li

#	Article	IF	CITATIONS
37	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 7636-7643.	10.3	110
38	Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction. Nanoscale, 2019, 11, 19783-19790.	5.6	50
39	Ultrathin Co ₃ O ₄ Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 1913-1920.	11.2	435
40	Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction. Journal of Colloid and Interface Science, 2018, 514, 299-305.	9.4	21
41	Hollow Pd–Sn Nanocrystals for Efficient Direct H ₂ O ₂ Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance. ACS Catalysis, 2018, 8, 3418-3423.	11.2	80
42	Enhancing the Selectivity of H ₂ O ₂ Electrogeneration by Steric Hindrance Effect. ACS Applied Materials & Interfaces, 2018, 10, 42534-42541.	8.0	69
43	Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy, 2018, 54, 238-250.	16.0	114
44	3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139, 137-144.	10.3	75
45	Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A, 2018, 6, 17771-17777.	10.3	29
46	From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. Journal of Materials Chemistry A, 2018, 6, 17164-17170.	10.3	67
47	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	3.7	55
48	<i>In situ</i> bubble template-assisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm, 2017, 19, 2946-2952.	2.6	10
49	Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Research, 2016, 9, 3893-3902.	10.4	86
50	A Facile Selfâ€Templated Approach for the Synthesis of Pt Hollow Nanospheres with Enhanced Electrocatalytic Activity. Advanced Materials Interfaces, 2016, 3, 1600563.	3.7	8
51	Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning the electronic properties of the Pd shell for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 12020-12024.	10.3	25
52	Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Materials, 2015, 7, e219-e219.	7.9	59
53	Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale, 2015, 7, 4894-4899.	5.6	50
54	A surfactant-free strategy for synthesizing reduced graphene oxide supported palladium nanoparticles with enhanced electrocatalytic performance towards formic acid oxidation. Journal of Power Sources, 2015, 280, 491-498.	7.8	17

Fu-min Li

#	Article	IF	CITATIONS
55	Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity. Nanotechnology, 2015, 26, 065603.	2.6	17
56	Ethylenediaminetetraacetic acid mediated synthesis of palladium nanowire networks and their enhanced electrocatalytic performance for the hydrazine oxidation reaction. Electrochimica Acta, 2015, 176, 125-129.	5.2	20
57	Synthesis of Nitrogen-Doped Graphene Quantum Dots at Low Temperature for Electrochemical Sensing Trinitrotoluene. Analytical Chemistry, 2015, 87, 11803-11811.	6.5	89