
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current sickle cell disease management practices in Nigeria. International Health, 2014, 6, 23-28.	0.8	94
2	Mortality in sickle cell patients on hydroxyurea therapy. Blood, 2005, 105, 545-547.	0.6	91
3	?s Haplotypes in various world populations. Human Genetics, 1992, 89, 99-104.	1.8	82
4	Infectious Etiologies of Transient Neutropenia in Previously Healthy Children. Pediatric Infectious Disease Journal, 2012, 31, 575-577.	1.1	60
5	Sensorineural Hearing Loss in Children with Sickle Cell Anemia. Annals of Otology, Rhinology and Laryngology, 1987, 96, 258-260.	0.6	49
6	Implementing newborn screening for sickle cell disease as part of immunisation programmes in Nigeria: a feasibility study. Lancet Haematology,the, 2020, 7, e534-e540.	2.2	35
7	Variability in the fetal hemoglobin level of the normal adult. , 1996, 53, 59-65.		34
8	Ten-Year Review of Hospital Admissions among Children with Sickle Cell Disease in Kuwait. Medical Principles and Practice, 2008, 17, 404-408.	1.1	30
9	Relationship between serum 25-hydroxyvitamin D and inflammatory cytokines in paediatric sickle cell disease. Cytokine, 2017, 96, 87-93.	1.4	29
10	Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Annals of Hematology, 2019, 98, 2507-2521.	0.8	29
11	HemoTypeSC, a low-cost point-of-care testing device for sickle cell disease: Promises and challenges. Blood Cells, Molecules, and Diseases, 2019, 78, 22-28.	0.6	28
12	Hemoglobin F Concentration as a Function of Age in Kuwaiti Sickle Cell Disease Patients. Medical Principles and Practice, 2007, 16, 286-290.	1.1	26
13	Global Genetic Architecture of an Erythroid Quantitative Trait Locus, <i>HMIP-2</i> . Annals of Human Genetics, 2014, 78, 434-451.	0.3	24
14	MRI Follow-Up and Natural History of Avascular Necrosis of the Femoral Head in Kuwaiti Children With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2004, 26, 351-353.	0.3	22
15	SICKLE CELL DISEASE IN KUWAIT. Hemoglobin, 2001, 25, 219-225.	0.4	21
16	Does Elevated Hemoglobin F Modulate the Phenotype in Hb SD-Los Angeles?. Acta Haematologica, 2010, 123, 135-139.	0.7	20
17	Blood transfusion services for patients with sickle cell disease in Nigeria. International Health, 2016, 8, 330-335.	0.8	19
18	Barriers to the use of hydroxyurea in the management of sickle cell disease in Nigeria. Hemoglobin, 2019, 43, 188-192.	0.4	19

#	Article	IF	CITATIONS
19	What's New in the Pathophysiology of Sickle Cell Disease?. Medical Principles and Practice, 2013, 22, 311-312.	1.1	16
20	Preliminary Evaluation of a Point-of-Care Testing Device (SickleSCANâ,,¢) in Screening for Sickle Cell Disease. Hemoglobin, 2017, 41, 77-82.	0.4	16
21	Haptoglobin Gene Polymorphisms in Sickle Cell Disease Patients with Different β ^S -Globin Gene Haplotypes. Medical Principles and Practice, 2010, 19, 447-450.	1.1	15
22	Limitations of Hb F as a Phenotypic Modifier in Sickle Cell Disease: Study of Kuwaiti Arab Patients. Hemoglobin, 2011, 35, 607-617.	0.4	15
23	Response to hydroxyurea among <scp>K</scp> uwaiti patients with sickle cell disease and elevated baseline <scp>H</scp> b <scp>F</scp> levels. American Journal of Hematology, 2015, 90, E138-9.	2.0	15
24	Nitric Oxide-cGMP Signaling Stimulates Erythropoiesis through Multiple Lineage-Specific Transcription Factors: Clinical Implications and a Novel Target for Erythropoiesis. PLoS ONE, 2016, 11, e0144561.	1.1	15
25	The proinflammatory cytokine GM-CSF downregulates fetal hemoglobin expression by attenuating the cAMP-dependent pathway in sickle cell disease. Blood Cells, Molecules, and Diseases, 2011, 47, 235-242.	0.6	13
26	The Sub-Phenotypes of Sickle Cell Disease in Kuwait. Hemoglobin, 2019, 43, 83-87.	0.4	13
27	The spectrum of splenic complications in patients with sickle cell disease in Africa: a systematic review. British Journal of Haematology, 2021, 193, 26-42.	1.2	13
28	Transthoracic Echocardiography and 6-Minute Walk Test in Kuwaiti Sickle Cell Disease Patients. Medical Principles and Practice, 2014, 23, 212-217.	1.1	12
29	Transcranial doppler and brain MRI in children with sickle cell disease and high hemoglobin F levels. Pediatric Blood and Cancer, 2014, 61, 25-28.	0.8	12
30	Clinical and Molecular Characteristics of Non-Transfusion-Dependent Thalassemia in Kuwait. Hemoglobin, 2015, 39, 320-326.	0.4	12
31	Current perspectives of sickle cell disease in Nigeria: changing the narratives. Expert Review of Hematology, 2019, 12, 609-620.	1.0	12
32	Risk of avascular necrosis of the femoral head in children with sickle cell disease on hydroxyurea: MRI evaluation. Pediatric Blood and Cancer, 2019, 66, e27503.	0.8	12
33	Mutations Associated with Beta-Thalassemia intermedia in Kuwait. Medical Principles and Practice, 2005, 14, 69-72.	1.1	11
34	Pattern of Bone Mineral Density in Sickle Cell Disease Patients with the High-Hb F Phenotype. Acta Haematologica, 2010, 123, 64-70.	0.7	11
35	The Sickle β-Thalassemia Phenotype. Journal of Pediatric Hematology/Oncology, 2017, 39, 327-331.	0.3	11
36	Evaluation of Alpha-1 Antitrypsin Levels and SERPINA1 Gene Polymorphisms in Sickle Cell Disease. Frontiers in Immunology, 2017, 8, 1491.	2.2	11

#	Article	IF	CITATIONS
37	Influence of alpha thalassemia on clinical and laboratory parameters among nigerian children with sickle cell anemia. Journal of Clinical Laboratory Analysis, 2019, 33, e22656.	0.9	11
38	Evaluation of von Willebrand factor and ADAMTS-13 antigen and activity levels in sickle cell disease patients in Kuwait. Journal of Thrombosis and Thrombolysis, 2017, 43, 117-123.	1.0	10
39	Uridine diphosphate glucuronosyl transferase 1A (UGT1A1) promoter polymorphism in young patients with sickle cell anaemia: report of the first cohort study from Nigeria. BMC Medical Genetics, 2019, 20, 160.	2.1	10
40	Hydroxyurea in children with sickle cell disease in a resourceâ€poor setting: Monitoring and effects of therapy. A practical perspective. Pediatric Blood and Cancer, 2021, 68, e28969.	0.8	10
41	HLA-DRB1 alleles in Hb SS patients with avascular necrosis of the femoral head. American Journal of Hematology, 2005, 79, 8-10.	2.0	9
42	Transcranial Doppler Ultrasound in Peninsular Arab Patients With Sickle Cell Disease. Journal of Ultrasound in Medicine, 2019, 38, 165-172.	0.8	9
43	Neutrophilic Panniculitis in a child with <i><scp>MYSM</scp>1</i> deficiency. Pediatric Dermatology, 2019, 36, 258-259.	0.5	9
44	The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease. Medical Principles and Practice, 2021, 30, 201-211.	1.1	9
45	Mild-phenotype sickle cell disease: molecular basis, clinical presentation and management recommendations. Current Paediatrics, 2005, 15, 57-61.	0.2	8
46	Comparative study of the growth and nutritional status of Brazilian and Nigerian school-aged children with sickle cell disease. International Health, 2017, 9, 327-334.	0.8	8
47	Sickle cell disease in southwestern Nigeria: assessment of knowledge of primary health care workers and available facilities. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 81-87.	0.7	8
48	Impact of Hydroxyurea on Anthropometry and Serum 25-Hydroxyvitamin D Among Children With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2018, 40, e243-e247.	0.3	8
49	Factors Associated With Hypochromia and Microcytosis Among High School Students in the Southeastern United States. Southern Medical Journal, 1994, 87, 1132-1137.	0.3	8
50	Level of Fetal Hemoglobin in Children with Sickle Cell Anemia Influence of Gender, Haplotype and α-Thalassemia-2 Trait. Acta Haematologica, 1993, 90, 34-38.	0.7	7
51	Influence of serum 25-hydroxyvitamin D on the rate of pain episodes in Nigerian children with sickle cell anaemia. Paediatrics and International Child Health, 2017, 37, 217-221.	0.3	7
52	Thrombospondin-1 and Vitamin D in Children With Sickle Cell Anemia. Journal of Pediatric Hematology/Oncology, 2019, 41, e525-e529.	0.3	7
53	<p>Haptoglobin Gene Polymorphism in Patients with Sickle Cell Anemia: Findings from a Nigerian Cohort Study</p> . The Application of Clinical Genetics, 2020, Volume 13, 107-114.	1.4	7
54	Relationship of Thrombospondin 1 to von Willebrand Factor and ADAMTS-13 in Sickle Cell Disease Patients of Arab Ethnicity. Acta Haematologica, 2021, 144, 182-189.	0.7	6

#	Article	IF	CITATIONS
55	Utilization of Pneumococcal Vaccine and Penicillin Prophylaxis in Sickle Cell Disease in Three African Countries: Assessment among Healthcare Providers in SickleInAfrica. Hemoglobin, 2021, 45, 163-170.	0.4	6
56	The Association of Serum 25-Hydroxyvitamin D With Biomarkers of Hemolysis in Pediatric Patients With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2018, 40, 159-162.	0.3	5
57	Pattern of cerebral blood flow and the interrelationship of vascular parameters of transcranial Doppler imaging in children with sickle cell disease. Journal of Clinical Ultrasound, 2019, 47, 128-132.	0.4	5
58	Determinants of Care-Seeking Practices for Children with Sickle Cell Disease in Ekiti, Southwest Nigeria. Journal of Blood Medicine, 2021, Volume 12, 123-132.	0.7	5
59	Anti-inflammatory cytokines in sickle cell disease. Molecular Biology Reports, 2022, 49, 2433-2442.	1.0	5
60	Perforated Duodenal Ulcer Associated with Deferasirox in a Child with β-Thalassemia Major. Hemoglobin, 2021, 45, 335-337.	0.4	5
61	Correlates of Pulmonary Function in Children with Sickle Cell Disease and Elevated Fetal Hemoglobin. Medical Principles and Practice, 2018, 27, 49-54.	1.1	4
62	Alpha thalassemia genotypes in Kuwait. BMC Medical Genetics, 2020, 21, 170.	2.1	4
63	Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing. Journal of Personalized Medicine, 2021, 11, 454.	1.1	4
64	A novel MECOM variant associated with congenital amegakaryocytic thrombocytopenia and radioulnar synostosis. Pediatric Blood and Cancer, 2022, 69, e29761.	0.8	4
65	Neutrophil gelatinase–associated lipocalin as a biomarker of nephropathy in sickle cell disease. Annals of Hematology, 2021, 100, 1401-1409.	0.8	3
66	Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease. Journal of Personalized Medicine, 2021, 11, 567.	1.1	3
67	Moyamoya syndrome in a child with HbEβâ€ŧhalassemia. Clinical Case Reports (discontinued), 2022, 10, e05536.	0.2	3
68	Effect of N(Epsilon)-(carboxymethyl)lysine on Laboratory Parameters and Its Association withβSHaplotype in Children with Sickle Cell Anemia. Disease Markers, 2019, 2019, 1-8.	0.6	2
69	Accidental hydroxyurea overdosage in a child with sickle cell anemia: An African experience. Pediatric Blood and Cancer, 2020, 67, e28632.	0.8	2
70	Risk of cerebral haemorrhage in children with sickle cell disease. Developmental Medicine and Child Neurology, 2015, 57, 116-117.	1.1	1
71	Evaluation of undergraduate students in paediatrics at Kuwait University. Medical Teacher, 1995, 17, 289-296.	1.0	0
72	Sickle Cell Disease in Africa and the Arabian Peninsula: Current Management and Challenges. , 2016, ,		0

² 339-370.

#	Article	IF	CITATIONS
73	Pattern of Renal Blood Flow and Renovascular Parameters in Adult Patients With Sickle Cell Disease. Journal of Ultrasound in Medicine, 2020, 39, 785-793.	0.8	0