Ho Jin Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017780/publications.pdf

Version: 2024-02-01

		94381	110317
155	5,105	37	64
papers	citations	h-index	g-index
159	159	159	4603
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off. Journal of Materials Science and Technology, 2022, 109, 176-185.	5.6	13
2	Surface decontamination of protective duplex oxide layers on stainless steel waste using deep eutectic solvents. Journal of Hazardous Materials, 2022, 425, 128000.	6.5	3
3	Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys ($x = 0$, 0.5, 1.0) fabricated by the powder metallurgy process. Journal of Materials Science and Technology, 2021, 69, 32-41.	5.6	43
4	Systematic study of (MoTa) NbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination. Journal of Materials Science and Technology, 2021, 78, 183-191.	5.6	48
5	Kinetic Monte Carlo simulations of the sintering microstructural evolution in density graded stainless steel fabricated by SPS. Materials Today Communications, 2021, 26, 101863.	0.9	4
6	Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix. Journal of Nuclear Materials, 2021, 543, 152566.	1.3	19
7	Novel approach to sintering hydroxyapatite-alumina nanocomposites at 300°C. Materials Chemistry and Physics, 2021, 260, 124187.	2.0	9
8	Helium ions irradiation analysis of W0.5(TaTiVCr)0.5 for application as a future fusion plasma-facing material. Materials Chemistry and Physics, 2021, 260, 124198.	2.0	9
9	Finite-Element Simulation of Residual Stresses During the Processing of Lumped Burnable Absorber Fuel. Frontiers in Energy Research, 2021, 9, .	1.2	O
10	Cold sintering of as-dried nanostructured calcium hydroxyapatite without using additives. Journal of Materials Research and Technology, 2021, 11, 811-822.	2.6	18
11	Electronic, electrical and dielectric analysis of Cr-doped hydroxyapatite. Chemical Physics Letters, 2021, 771, 138507.	1.2	13
12	The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy. Journal of Materials Science and Technology, 2021, 85, 62-75.	5.6	27
13	Plasma spheroidized MoNbTaTiZr high entropy alloy showing improved plasticity. Materials Chemistry and Physics, 2021, 273, 125060.	2.0	10
14	Effect of boron addition on the microstructure and mechanical properties of refractory AlO.1CrNbVMo high-entropy alloy. International Journal of Refractory Metals and Hard Materials, 2021, 100, 105636.	1.7	12
15	Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing. Journal of Materials Science and Technology, 2021, 95, 114-126.	5.6	19
16	Dual functional amorphous aluminosilicate sorbents for removing and cold-immobilizing cesium/cobalt/nickel-ions. Sustainable Materials and Technologies, 2021, 30, e00356.	1.7	4
17	Non-volatile immobilization of iodine by the cold-sintering of iodosodalite. Journal of Hazardous Materials, 2020, 386, 121646.	6.5	20
18	Minimization of the sample temperature deviation and the effect of current during high-temperature compressive creep testing by the spark plasma sintering apparatus. Materialia, 2020, 9, 100550.	1.3	5

#	Article	IF	Citations
19	Effects of F3+ ion implantation on the properties of W and W0.5(TaTiVCr)0.5 for depth marker-based plasma erosion analysis. Nuclear Materials and Energy, 2020, 25, 100806.	0.6	6
20	Enhanced mechanical properties of boron nitride nanosheet/copper nanocomposites via a molecular-level mixing process. Composites Part B: Engineering, 2020, 195, 108088.	5.9	23
21	U-Mo Based Fuel System. , 2020, , 499-530.		3
22	Microstructures and enhanced mechanical properties of an oxide dispersion-strengthened Ni-rich high entropy superalloy fabricated by a powder metallurgical process. Journal of Alloys and Compounds, 2020, 839, 155724.	2.8	19
23	Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites. Journal of Alloys and Compounds, 2020, 831, 154647.	2.8	46
24	W _{0.5} TaTiVCr-based composite reinforced with W-mesh for fusion plasma-facing applications. Functional Composites and Structures, 2020, 2, 015004.	1.6	2
25	Combinatorial synthesis and analysis of AlxTayVz-Cr20Mo20Nb20Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high-entropy alloys: Oxidation behavior. Journal of Alloys and Compounds, 2020, 828, 154427.	2.8	63
26	One-step functionally graded materials fabrication using ultra-large temperature gradients obtained through finite element analysis of field-assisted sintering technique. Materials and Design, 2020, 192, 108714.	3.3	10
27	High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing. Nuclear Engineering and Technology, 2020, 52, 2054-2063.	1.1	12
28	Combinatorial development of the low-density high-entropy alloy Al10Cr20Mo20Nb20Ti20Zr10 having gigapascal strength at 1000°C. Journal of Alloys and Compounds, 2020, 845, 155700.	2.8	13
29	U-Si Based Fuel System. , 2020, , 485-498.		4
30	U-Al Based Fuel System. , 2020, , 464-484.		0
31	Residual stress measurement of SiC Tile/Al-SiC _p hybrid composites using neutron diffraction. Functional Composites and Structures, 2019, 1, 035002.	1.6	0
32	The outstanding tensile strength of Ni-rich high entropy superalloy fabricated by powder metallurgical process. Materials Chemistry and Physics, 2019, 235, 121749.	2.0	12
33	Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys. Applied Surface Science, 2019, 485, 368-374.	3.1	69
34	Immobilization of radioactive corrosion products by cold sintering of pure hydroxyapatite. Journal of Hazardous Materials, 2019, 374, 228-237.	6.5	26
35	Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids. International Journal of Refractory Metals and Hard Materials, 2019, 81, 15-20.	1.7	20
36	Efficient immobilization of ionic corrosion products by a silica-hydroxyapatite composite <i>via</i> a cold sintering route. RSC Advances, 2019, 9, 34872-34879.	1.7	8

#	Article	IF	CITATIONS
37	Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scripta Materialia, 2019, 162, 477-481.	2.6	52
38	Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications. Journal of Nuclear Materials, 2019, 514, 40-49.	1.3	29
39	Cold sintering and durability of iodate-substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine. Journal of Nuclear Materials, 2019, 514, 84-89.	1.3	30
40	Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nuclear Fusion, 2019, 59, 026007.	1.6	11
41	Transition in microstructural and mechanical behavior by reduction of sigma-forming element content in a novel high entropy alloy. Materials and Design, 2018, 145, 11-19.	3.3	35
42	Fabrication of oxide pellets containing lumped Gd2O3using Y2O3-stabilized ZrO2for burnable absorber fuel applications. International Journal of Energy Research, 2018, 42, 2141-2151.	2.2	8
43	In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering. Journal of Materials Science and Technology, 2018, 34, 1397-1404.	5.6	35
44	The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasmaÂsintering for fusion plasma-facing materials. Materials Chemistry and Physics, 2018, 210, 87-94.	2.0	83
45	Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 62-70.	2.0	63
46	Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Materials Science & Digneering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 616-624.	2.6	180
47	Biomimetic Artificial Nacre: Boron Nitride Nanosheets/Gelatin Nanocomposites for Biomedical Applications. Advanced Functional Materials, 2018, 28, 1805948.	7.8	44
48	High-entropy alloy strengthened by in situ formation of entropy-stabilized nano-dispersoids. Scientific Reports, 2018, 8, 14085.	1.6	55
49	Uncertainty and sensitivity analyses for fuel temperature evaluations of U-Mo/Al plate-type dispersion fuel. Annals of Nuclear Energy, 2018, 120, 581-592.	0.9	0
50	A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior. Journal of Materials Research, 2018, 33, 3226-3234.	1.2	29
51	Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. Journal of Alloys and Compounds, 2018, 767, 1012-1021.	2.8	63
52	Strength enhancement and density reduction by the addition of Al in CrFeMoV based high-entropy alloy fabricated through powder metallurgy. Materials and Design, 2018, 157, 97-104.	3.3	27
53	Environmentally benign and novel management route for radioactive corrosion products by hydroxyapatite. Journal of Nuclear Materials, 2018, 507, 218-225.	1.3	15
54	The modeling and simulation of the thermal conductivity of irradiated U-Mo dispersion fuel: Estimation of the thermal conductivity of the interaction layer. Journal of Nuclear Materials, 2018, 510, 199-209.	1.3	4

#	Article	IF	CITATIONS
55	Enhanced Capacitive Deionization by Dispersion of CNTs in Activated Carbon Electrode. ACS Sustainable Chemistry and Engineering, 2018, 6, 1572-1579.	3.2	71
56	Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Materialia, 2017, 129, 170-182.	3.8	130
57	Enhanced electromagnetic interference shielding behavior of Graphene Nanoplatelet/Ni/Wax nanocomposites. Journal of Materials Chemistry C, 2017, 5, 6471-6479.	2.7	58
58	Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications. Scientific Reports, 2017, 7, 1926.	1.6	121
59	Synthesis of Chemically Ordered Pt ₃ Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31806-31815.	4.0	81
60	Thermal conductivity of Mo-reinforced ZrO2 composites fabricated by spark plasma sintering for inert matrix fuels. Materials and Design, 2017, 134, 476-485.	3.3	18
61	Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth. Journal of Nuclear Materials, 2017, 495, 249-266.	1.3	27
62	Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Composites Part B: Engineering, 2017, 129, 169-179.	5.9	194
63	Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation. Metals and Materials International, 2017, 23, 1257-1265.	1.8	9
64	High conductivity and stretchability of 3D welded silver nanowire filled graphene aerogel hybrid nanocomposites. Journal of Materials Chemistry C, 2017, 5, 8211-8218.	2.7	31
65	Tungsten-Based Composites for Nuclear Fusion Applications. , 2016, , .		9
66	Size-dependent microstructures in rapidly solidified uranium niobium powder particles. Journal of Nuclear Materials, 2016, 479, 1-10.	1.3	5
67	Surface modification effects of SiC tile on the wettability and interfacial bond strength of SiC tile/Al7075-SiCp hybrid composites. Surface and Coatings Technology, 2016, 307, 399-406.	2.2	28
68	Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4616-4624.	1.1	10
69	Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites. Scientific Reports, 2016, 6, 27609.	1.6	45
70	Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scripta Materialia, 2016, 123, 130-134.	2.6	165
71	Fabrication of protective-coated SiC reinforced tungsten matrix composites with reduced reaction phases by spark plasma sintering. Metals and Materials International, 2016, 22, 493-500.	1.8	14
72	Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3319-3325.	4.0	97

#	Article	IF	Citations
73	Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials and Design, 2016, 95, 1-8.	3.3	159
74	Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique. Materials Characterization, 2016, 114, 225-233.	1.9	13
7 5	Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures. Journal of Magnetics, 2016, 21, 159-163.	0.2	3
76	Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation. Journal of Magnetics, 2016, 21, 183-186.	0.2	5
77	Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling. Nano Letters, 2015, 15, 1238-1244.	4.5	486
78	Fabrication of Al2O3/AlN micro-composites designed for tailored physical properties. Materials and Design, 2015, 86, 1-5.	3.3	14
79	Fabrication of ZrO2-based nanocomposites for transuranic element-burning inert matrix fuel. Nuclear Engineering and Technology, 2015, 47, 617-623.	1.1	21
80	Metallurgical considerations for the fabrication of low-enriched uranium dispersion targets with a high density for 99Mo production. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 31-39.	0.7	4
81	Effects of interfacial Al oxide layers: Control of reaction behavior in micrometer-scale Al/Ni multilayers. Materials and Design, 2015, 84, 372-377.	3.3	12
82	Stationary self-propagation combustion with variations in the total layer thickness of compression-bonded Ni-sputtered Al foil multilayers. Journal of Alloys and Compounds, 2015, 626, 16-19.	2.8	8
83	High Temperature Thermo-mechanical Properties of HfC Reinforced Tungsten Matrix Composites. Composites Research, 2015, 28, 366-371.	0.1	5
84	Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU). Journal of Nuclear Fuel Cycle and Waste Technology, 2015, 13, 155-161.	0.1	4
85	Self-propagation Combustion Behavior with Varying Al/Ni Ratios in Compression-Bonded Ni-sputtered Al Foil Multilayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5691-5698.	1.1	9
86	INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL. Nuclear Engineering and Technology, 2014, 46, 159-168.	1.1	11
87	The effect of HfC content on mechanical properties HfC–W composites. International Journal of Refractory Metals and Hard Materials, 2014, 44, 49-53.	1.7	52
88	Effects of the Al/Ni ratio on the reactions in the compression-bonded Ni-sputtered Al foil multilayer. Journal of Alloys and Compounds, 2014, 589, 455-461.	2.8	22
89	Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing. Journal of Alloys and Compounds, 2014, 589, 94-100.	2.8	6
90	High temperature ablation resistance of ZrNp reinforced W matrix composites. International Journal of Refractory Metals and Hard Materials, 2014, 42, 17-22.	1.7	12

#	Article	IF	Citations
91	Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes. Journal of Alloys and Compounds, 2014, 617, 505-510.	2.8	31
92	In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al. Journal of Nuclear Materials, 2014, 454, 238-246.	1.3	15
93	Rapidly solidified U–6wt%Nb powders for dispersion-type nuclear fuels. Journal of Nuclear Materials, 2014, 448, 72-79.	1.3	12
94	Elevated temperature ablation resistance of HfC particle-reinforced tungsten composites. International Journal of Refractory Metals and Hard Materials, 2014, 43, 89-93.	1.7	28
95	DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER. Nuclear Engineering and Technology, 2013, 45, 979-986.	1.1	15
96	MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN AI MATRIX. Nuclear Engineering and Technology, 2013, 45, 827-838.	1.1	29
97	POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO. Nuclear Engineering and Technology, 2013, 45, 847-858.	1.1	14
98	Reduced interaction layer growth of U–Mo dispersion in Al–Si. Journal of Nuclear Materials, 2012, 430, 50-57.	1.3	15
99	Polycrystalline cubic boron nitride sintered compacts prepared from nanocrystalline TiN coated cBN powder. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 151-156.	2.6	30
100	Irradiation performance of U–Mo–Ti and U–Mo–Zr dispersion fuels in Al–Si matrixes. Journal of Nuclear Materials, 2012, 427, 233-238.	1.3	14
101	Microstructure and mechanical properties of SiC-nanowire-augmented tungsten composites. Journal of Alloys and Compounds, 2011, 509, 9060-9064.	2.8	25
102	A sol–gel route to nanocrystalline TiN coated cubic boron nitride particles. Journal of Alloys and Compounds, 2011, 509, 9764-9769.	2.8	7
103	Thermal creep modeling of HT9 steel for fast reactor applications. Journal of Nuclear Materials, 2011, 409, 207-213.	1.3	8
104	Preparation of Nanocrystalline TiN Coated Cubic Boron Nitride Powders by a Sol–Gel Process. Journal of Nanoscience and Nanotechnology, 2011, 11, 363-367.	0.9	5
105	THE EFFECT OF SI-RICH LAYER COATING ON U-MO VS. AL INTERDIFFUSION. Nuclear Engineering and Technology, 2011, 43, 159-166.	1.1	22
106	FCCI barrier performance of electroplated Cr for metallic fuel. Journal of Nuclear Materials, 2010, 401, 98-103.	1.3	28
107	Neutron diffraction analyses of U–(6–10wt.%)Mo alloy powders fabricated by centrifugal atomization. Journal of Nuclear Materials, 2010, 397, 27-30.	1.3	24
108	Amorphization of the interaction products in U–Mo/Al dispersion fuel during irradiation. Journal of Nuclear Materials, 2009, 385, 623-628.	1.3	49

#	Article	IF	CITATIONS
109	Performance of FCCI barrier foils for U–Zr–X metallic fuel. Journal of Nuclear Materials, 2009, 392, 206-212.	1.3	61
110	Nitration by a simulated fuel technique for nitride fuel re-fabrication. Journal of Nuclear Materials, 2009, 392, 171-175.	1.3	0
111	Performance of a diffusion barrier under a fuel–clad chemical interaction (FCCI). Journal of Nuclear Materials, 2009, 394, 144-150.	1.3	32
112	Fabrication and Characterization of ODS 316L Stainless Steels. Journal of Korean Powder Metallurgy Institute, 2009, 16, 122-130.	0.2	2
113	Analytical modeling to calculate the hardness of ultra-fine WC–Co cemented carbides. Materials Science & Science & Properties, Microstructure and Processing, 2008, 489, 234-244.	2.6	19
114	Effect of Si and Zr on the interdiffusion of U–Mo alloy and Al. Journal of Nuclear Materials, 2008, 374, 422-430.	1.3	60
115	Irradiation tests and post-irradiation examinations of DUPIC fuel. Annals of Nuclear Energy, 2008, 35, 1805-1812.	0.9	6
116	Effect of size and location of spherical pores on transverse rupture strength of WC-Co cemented carbides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 404-408.	2.6	30
117	PERFORMANCE EVALUATION OF U-Mo/Al DISPERSION FUEL BY CONSIDERING A FUEL-MATRIX INTERACTION. Nuclear Engineering and Technology, 2008, 40, 409-418.	1.1	30
118	Radiation-Induced Recrystallization of U-Mo Fuel Particles and Radiation-Induced Amorphization of Interaction Products in U-Mo/Al Dispersion Fuel. Materials Science Forum, 2007, 558-559, 319-322.	0.3	8
119	Progress of the DUPIC Fuel Compatibility Analysis - IV: Fuel Performance. Nuclear Technology, 2007, 157, 1-17.	0.7	2
120	Effect of mechanical alloying process on microstructure and mechanical properties of ODS tungsten heavy alloys. Journal of Alloys and Compounds, 2007, 434-435, 433-436.	2.8	38
121	Diffusion coefficient of Xe-133 in a SIMFUEL with a low burnup. Annals of Nuclear Energy, 2007, 34, 153-158.	0.9	7
122	Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 55-60.	2.6	30
123	Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 323-329.	2.6	49
124	USE OF A CENTRIFUGAL ATOMIZATION PROCESS IN THE DEVELOPMENT OF RESEARCH REACTOR FUEL. Nuclear Engineering and Technology, 2007, 39, 617-626.	1.1	38
125	Correlation Development for the Interdiffusion Layer Growth in (U-Mo)/Al Dispersion Nuclear Fuel. Defect and Diffusion Forum, 2006, 258-260, 176-181.	0.4	1
126	Fabrication method and thermal conductivity assessment of molybdenum-precipitated uranium dioxide pellets. Journal of Nuclear Materials, 2006, 352, 151-156.	1.3	13

#	Article	IF	Citations
127	Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering. Journal of Nuclear Materials, 2006, 352, 341-348.	1.3	65
128	Heats of formation of (U,Mo)Al3 and U(Al,Si)3. Journal of Nuclear Materials, 2006, 358, 52-56.	1.3	30
129	Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al. Journal of Phase Equilibria and Diffusion, 2006, 27, 614-621.	0.5	24
130	Diffusion reaction behaviors of U-Mo/Al dispersion fuel. Journal of Phase Equilibria and Diffusion, 2006, 27, 651-658.	0.5	30
131	Irradiation-Enhanced Interdiffusion in the Diffusion Zone of U-Mo Dispersion Fuel in Al. Journal of Phase Equilibria and Diffusion, 2006, 27, 614-621.	0.5	3
132	Diffusion Reaction Behaviors of U-Mo/Al Dispersion Fuel. Journal of Phase Equilibria and Diffusion, 2006, 27, 651-658.	0.5	5
133	Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel. Journal of Physics and Chemistry of Solids, 2005, 66, 671-674.	1.9	1
134	Analysis of creep behavior of SiC/Al metal matrix composites based on a generalized shear-lag model. Journal of Materials Research, 2004, 19, 3633-3640.	1.2	11
135	Reaction layer growth and reaction heat of U–Mo/Al dispersion fuels using centrifugally atomized powders. Journal of Nuclear Materials, 2003, 321, 210-220.	1.3	68
136	Combination of mechanical alloying and two-stage sintering of a 93W–5.6Ni–1.4Fe tungsten heavy alloy. Materials Science & mp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 253-260.	2.6	90
137	Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 363, 179-184.	2.6	122
138	Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. Journal of Materials Research, 2003, 18, 2851-2858.	1.2	160
139	Processing, Microstructure, and Mechanical Properties of Mechanically Alloyed Tungsten Heavy Alloy. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 665-672.	0.1	0
140	Nano-Scale Crystallite Size Measurement of Attrition Milled Oxide Nuclear Fuel Powders by Neutron Diffraction Line Broadening. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 415-420.	0.1	1
141	Morphology of Carbon Nanotubes Prepared on Alumina Supported Iron Catalyst by Mechanochemical Treatment. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 377-382.	0.1	0
142	Matrix pools in a partially mechanically alloyed tungsten heavy alloy for localized shear deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 333, 187-192.	2.6	27
143	Thermal expansion of UO2 and simulated DUPIC fuel. Journal of Nuclear Materials, 2002, 301, 242-244.	1.3	21
144	Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2011-2020.	1.1	45

#	Article	IF	CITATIONS
145	Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 291, 91-96.	2.6	101
146	Effect of deposition pressure on bonding nature in hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 57-63.	2.6	16
147	Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2475-2489.	1.1	20
148	Effects of Sintering Conditions on Mechanical Properties of Mechanically Alloyed Tungsten Heavy Alloys. Key Engineering Materials, 2000, 183-187, 1291-1296.	0.4	2
149	Title is missing!. Journal of Materials Science, 1999, 34, 329-336.	1.7	20
150	Analysis of anisotropy in elastic constants of SiCp/ 2124 Al metal matrix composites. Scripta Materialia, 1999, 41, 1261-1267.	2.6	22
151	EFFECT OF SiC VOLUME FRACTION ON CREEP BEHAVIOR OF SiCp/2124Al METAL MATRIX COMPOSITE. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 280-284.	0.1	1
152	Title is missing!. Materials Technology, 1998, 5, 279-290.	0.3	23
153	Impact and Dynamic Deformation Behaviour of Mechanically Alloyed Tungsten-Based Composites. Key Engineering Materials, 1997, 141-143, 453-462.	0.4	3
154	Mechanical alloying process of 93W-5.6Ni-1.4Fe tungsten heavy alloy. Journal of Materials Processing Technology, 1997, 63, 292-297.	3.1	57
155	Design of low cost, scalable, and high-performance TiS2 thermoelectric materials via wet ball-milling process. Journal of Materials Science: Materials in Electronics, 0 , 1 .	1.1	1