
Masaki Sekino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 2017, 12, 907-913.	31.5	820
2	Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561, 516-521.	27.8	743
3	Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14533-14538.	7.1	313
4	Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10554-10559.	7.1	201
5	Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature Nanotechnology, 2019, 14, 156-160.	31.5	195
6	Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications, 2016, 7, 11425.	12.8	179
7	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science Advances, 2018, 4, eaau2426.	10.3	155
8	Selfâ€Adhesive and Ultra onformable, Subâ€300 nm Dry Thinâ€Film Electrodes for Surface Monitoring of Biopotentials. Advanced Functional Materials, 2018, 28, 1803279.	14.9	136
9	Integration of Organic Electrochemical and Fieldâ€Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays. Advanced Materials, 2016, 28, 9722-9728.	21.0	131
10	A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature Communications, 2014, 5, 5898.	12.8	120
11	Electromagnetic Design of 10 MW Class Fully Superconducting Wind Turbine Generators. IEEE Transactions on Applied Superconductivity, 2012, 22, 5201904-5201904.	1.7	83
12	Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Scientific Reports, 2020, 10, 2483.	3.3	66
13	Handheld magnetic probe with permanent magnet and Hall sensor for identifying sentinel lymph nodes in breast cancer patients. Scientific Reports, 2018, 8, 1195.	3.3	56
14	Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. Journal of Surgical Oncology, 2019, 120, 1391-1396.	1.7	53
15	Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21138-21146.	7.1	44
16	Ultraflexible Transparent Oxide/Metal/Oxide Stack Electrode with Low Sheet Resistance for Electrophysiological Measurements. ACS Applied Materials & Interfaces, 2017, 9, 34744-34750.	8.0	27
17	A Monolithically Processed Rectifying Pixel for Highâ€Resolution Organic Imagers. Advanced Electronic Materials, 2018, 4, 1700601.	5.1	22
18	Eccentric figureâ€eight coils for transcranial magnetic stimulation. Bioelectromagnetics, 2015, 36, 55-65.	1.6	19

Masaki Sekino

#	Article	IF	CITATIONS
19	Development of Magnetic Probe for Sentinel Lymph Node Detection in Laparoscopic Navigation for Gastric Cancer Patients. Scientific Reports, 2020, 10, 1798.	3.3	18
20	Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation. Frontiers in Human Neuroscience, 2021, 15, 693207.	2.0	15
21	Application of Magnetic Nanoparticles for Rapid Detection and In Situ Diagnosis in Clinical Oncology. Cancers, 2022, 14, 364.	3.7	15
22	Figure-Eight Coils for Magnetic Stimulation: From Focal Stimulation to Deep Stimulation. Frontiers in Human Neuroscience, 2021, 15, 805971.	2.0	13
23	Development of device for quantifying magnetic nanoparticle tracers accumulating in sentinel lymph nodes. AIP Advances, 2018, 8, .	1.3	12
24	DeepSPIO: Super Paramagnetic Iron Oxide Particle Quantification Using Deep Learning in Magnetic Resonance Imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 143-153.	13.9	12
25	Magnetically Promoted Rapid Immunofluorescence Staining for Frozen Tissue Sections. Journal of Histochemistry and Cytochemistry, 2019, 67, 575-587.	2.5	11
26	Electromagnetic design study of 10 MW-class wind turbine generators using circular superconducting field coils. , 2011, , .		10
27	Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Medical Imaging, 2020, 20, 58.	2.7	10
28	All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, <i>In Vivo</i> and <i>Ex Vivo</i> . ACS Nano, 2021, 15, 12869-12879.	14.6	10
29	Magnetic Shielding Characteristics of Multiple Bulk Superconductors for Higher Field Applications. IEEE Transactions on Applied Superconductivity, 2011, 21, 1584-1587.	1.7	9
30	Multipoint Tissue Circulation Monitoring with a Flexible Optical Probe. Scientific Reports, 2017, 7, 9643.	3.3	9
31	Measurement of optical reflection and temperature changes after blood occlusion using a wearable device. Scientific Reports, 2020, 10, 11491.	3.3	9
32	Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model. PLoS ONE, 2021, 16, e0248531.	2.5	9
33	Magnetically Guided Localization Using a Guiding-Marker System® and a Handheld Magnetic Probe for Nonpalpable Breast Lesions: A Multicenter Feasibility Study in Japan. Cancers, 2021, 13, 2923.	3.7	9
34	Combined use of fluorescence with a magnetic tracer and dilution effect upon sentinel node localization in a murine model. International Journal of Nanomedicine, 2018, Volume 13, 2427-2433.	6.7	8
35	Effects of 7 T static magnetic fields on the expression of biological markers and the formation of bone in rats. Bioelectromagnetics, 2019, 40, 16-26.	1.6	8
36	Electromagnetic characteristics of eccentric figure-eight coils for transcranial magnetic stimulation: A numerical study. Journal of Applied Physics, 2012, 111, .	2.5	7

MASAKI SEKINO

#	Article	IF	CITATIONS
37	Three-dimensional sensitivity mapping of a handheld magnetic probe for sentinel lymph node biopsy. AIP Advances, 2017, 7, .	1.3	7
38	MR lymphography with superparamagnetic iron oxide for sentinel lymph node mapping of NO early oral cancer: A pilot study. Dentomaxillofacial Radiology, 2021, 50, 20200333.	2.7	6
39	A Coupled FE Phase-Domain Model for Superconducting Synchronous Machine. IEEE Transactions on Applied Superconductivity, 2012, 22, 5200804-5200804.	1.7	5
40	A magnetic probe equipped with small-tip permanent magnet for sentinel lymph node biopsy. AIP Advances, 2017, 7, .	1.3	5
41	Electromagnetic and mechanical characterization of a flexible coil for transcranial magnetic stimulation. AIP Advances, 2019, 9, .	1.3	5
42	Identification of Metal-Binding Peptides and Their Conjugation onto Nanoparticles of Superparamagnetic Iron Oxides and Liposomes. ACS Applied Materials & Interfaces, 2020, 12, 24623-24634.	8.0	5
43	Magnetic Field Generation System of the Magnetic Probe With Diamond Quantum Sensor and Ferromagnetic Materials for the Detection of Sentinel Lymph Nodes With Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	5
44	Optimization of SPIO Injection for Sentinel Lymph Node Dissection in a Rat Model. Cancers, 2021, 13, 5031.	3.7	5
45	Exploratory Study of Superparamagnetic Iron Oxide Dose Optimization in Breast Cancer Sentinel Lymph Node Identification Using a Handheld Magnetic Probe and Iron Quantitation. Cancers, 2022, 14, 1409.	3.7	5
46	Magnetic sentinel lymph node biopsy in a murine tumour model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1045-1052.	3.3	4
47	Establishment of a model of sentinel lymph node metastasis using immunodeficient swine. Scientific Reports, 2019, 9, 7923.	3.3	4
48	Magnetic Nanoparticle Detection by Utilizing Nonlinear Magnetization for Sentinel Lymph Nodes of Breast Cancer Patients. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	4
49	Development of an automatic magnetic immunostaining system for rapid intraoperative diagnosis of cancer metastasis. AIP Advances, 2020, 10, .	1.3	3
50	Development of an optimized dome-shaped magnet for rapid magnetic immunostaining. AIP Advances, 2020, 10, .	1.3	3
51	Sentinel lymph node biopsy with a handheld cordless magnetic probe following preoperative MR lymphography using superparamagnetic iron oxide for clinically N0 early oral cancer: A feasibility study. Journal of Stomatology, Oral and Maxillofacial Surgery, 2022, , .	1.3	3
52	Virus Detection using Second Harmonics of Magnetic Nanoparticles. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	1.4	3
53	An MRI-compatible, ultra-thin, flexible stimulator array for functional neuroimaging by direct stimulation of the rat brain. , 2014, 2014, 6702-5.		2
54	Field-Effect Transistors: Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9869-9869.	21.0	2

Masaki Sekino

#	Article	IF	CITATIONS
55	Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime. Annals of Biomedical Engineering, 2017, 45, 1352-1364.	2.5	2
56	Single laser to multiple optical fiber device for optogenetics-based epidural spinal cord stimulation. , 2017, , .		2
57	Magnetic characteristics of a magnetic marker for localized tumor excision with a handheld magnetic probe. AIP Advances, 2020, 10, .	1.3	2
58	Eccentric figure-eight magnetic stimulator coils. , 2012, , .		1
59	Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition. Magnetic Resonance Imaging, 2016, 34, 552-561.	1.8	1
60	Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants. AIP Advances, 2017, 7, .	1.3	1
61	Sensors: A Monolithically Processed Rectifying Pixel for Highâ€Resolution Organic Imagers (Adv.) Tj ETQq1 1 0.78	84314 rgB	T <u>/</u> Overlock
62	Direct Impact of Motor Cortical Stimulation on the Blood Oxygen-level Dependent Response in Rats. Magnetic Resonance in Medical Sciences, 2021, 20, 83-90.	2.0	1
63	Numerical and Experimental Evaluation of Magnetic Markers for Localized Tumor Excision With a Handheld Magnetic Probe. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	1
64	Passive Shimming of Magnetically Shielded Room Using Ferromagnetic Plates. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
65	Hands-Free Wearable Electrolarynx using Linear Predictive Coding Residual Waves and Listening Evaluation. Advanced Biomedical Engineering, 2022, 11, 68-75.	0.6	1
66	Two-dimensional magnetic susceptibility mapping of long objects by magnetic resonance imaging. International Journal of Applied Electromagnetics and Mechanics, 2014, 45, 817-823.	0.6	0
67	Development of a SQUID system for ultralow-field MRI measurement. International Journal of Applied Electromagnetics and Mechanics, 2014, 45, 771-778.	0.6	Ο
68	A magnetic stimulator coil with high robustness to positioning error. , 2014, , .		0
69	Cavity-shaped magnet for highly sensitive magnetic detection of magnetic nanoparticles in breast cancer patients. AIP Advances, 2020, 10, 015010.	1.3	0
70	Flexible Light Sources. Advances in Experimental Medicine and Biology, 2021, 1293, 601-612.	1.6	0
71	Estimation of Local Magnetic Fields in the Rat Brain based on Multichannel Potential Recordings. IEEJ Transactions on Fundamentals and Materials, 2013, 133, 376-382.	0.2	Ο
72	Evaluation of the Effects of Magnetic Field Exposure on Body Sway. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	1.4	0

#	Article	IF	CITATIONS
73	Investigation of the Difference in Temperature Response of Skin to Heat Input in Judging Blood Flow Disorders. IEEJ Transactions on Fundamentals and Materials, 2022, 142, 263-268.	0.2	Ο
74	Application of Magnetic Nanoparticle in Cancer Surgery. IEEJ Transactions on Fundamentals and Materials, 2022, 142, 236-242.	0.2	0