Guang-Guo Ying

List of Publications by Citations

Source: https://exaly.com/author-pdf/4017478/guang-guo-ying-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

353	21,106	77	135
papers	citations	h-index	g-index
363	25,519	7.9	7.35
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
353	Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 6772-82	10.3	1937
352	Environmental fate of alkylphenols and alkylphenol ethoxylatesa review. <i>Environment International</i> , 2002 , 28, 215-26	12.9	867
351	Fate, behavior and effects of surfactants and their degradation products in the environment. <i>Environment International</i> , 2006 , 32, 417-31	12.9	640
350	Review of antibiotic resistance in China and its environment. Environment International, 2018, 110, 160-	172 9	635
349	Occurrence and fate of hormone steroids in the environment. <i>Environment International</i> , 2002 , 28, 545-	51 12.9	526
348	Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1201-8	3.8	330
347	Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. <i>Environmental Pollution</i> , 2009 , 157, 1636-42	9.3	321
346	Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. <i>Environmental Pollution</i> , 2011 , 159, 1877-85	9.3	316
345	Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. <i>Science of the Total Environment</i> , 2013 , 452-453, 365-76	10.2	296
344	Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. <i>Environmental Pollution</i> , 2007 , 150, 300-5	9.3	283
343	Reduced plant uptake of pesticides with biochar additions to soil. <i>Chemosphere</i> , 2009 , 76, 665-71	8.4	278
342	Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. <i>Environment International</i> , 2007 , 33, 199-205	12.9	267
341	Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. <i>Science of the Total Environment</i> , 2013 , 444, 183-95	10.2	261
340	Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. <i>Water Research</i> , 2003 , 37, 3785-91	12.5	259
339	Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2011 , 1218, 1367-78	4.5	247
338	Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. <i>Science of the Total Environment</i> , 2009 , 407, 962-74	10.2	224
337	Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1244, 123-38	4.5	218

336	Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. <i>Journal of Hazardous Materials</i> , 2010 , 179, 215-22	12.8	211
335	Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. <i>Science of the Total Environment</i> , 2010 , 408, 3424-32	10.2	198
334	Sorption and desorption behaviors of diuron in soils amended with charcoal. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 8545-50	5.7	196
333	Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. <i>Environment International</i> , 2016 , 92-93, 210-9	12.9	195
332	Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. <i>Water Research</i> , 2012 , 46, 2194-204	12.5	188
331	Degradation of Five Selected Endocrine-Disrupting Chemicals in Seawater and Marine Sediment. <i>Environmental Science & Environmental Science & Environm</i>	10.3	184
330	Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. <i>Environmental Pollution</i> , 2011 , 159, 1490-8	9.3	180
329	Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure. <i>Marine Pollution Bulletin</i> , 2015 , 90, 181-7	6.7	176
328	Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. <i>Environment International</i> , 2010 , 36, 557-62	12.9	171
327	Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2640-5	3.8	171
326	Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. <i>Environmental Pollution</i> , 2012 , 165, 225-32	9.3	169
325	Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables. <i>Environmental Science & Environmental Science &</i>	10.3	163
324	Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. <i>Science of the Total Environment</i> , 2018 , 616-617, 453-461	10.2	153
323	Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46, 272-80	2.2	147
322	Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. <i>Science of the Total Environment</i> , 2016 , 565, 240-248	10.2	144
321	Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 7915-21	5.7	143
320	Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. <i>Water Research</i> , 2013 , 47, 395-405	12.5	140
319	4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. <i>Environment International</i> , 2013 , 52, 81-6	12.9	136

318	Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. <i>Environmental Pollution</i> , 2012 , 169, 42-9	9.3	134
317	Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. <i>Environmental Pollution</i> , 2011 , 159, 148-156	9.3	134
316	Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. <i>Science of the Total Environment</i> , 2010 , 408, 3139-47	10.2	132
315	Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. <i>Science of the Total Environment</i> , 2016 , 571, 974-82	10.2	124
314	Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. <i>Chemosphere</i> , 2014 , 95, 581-8	8.4	122
313	Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics. <i>Bioresource Technology</i> , 2017 , 238, 70-77	11	121
312	Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. <i>Environmental Pollution</i> , 2015 , 198, 15-24	9.3	120
311	Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. <i>Water Research</i> , 2011 , 45, 5005-14	12.5	120
310	Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 1498-505		118
309	Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. <i>Environmental Pollution</i> , 2010 , 158, 2101-9	9.3	118
308	Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. <i>Environmental Science & Environmental & Envi</i>	10.3	117
307	Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. <i>Environment International</i> , 2015 , 84, 142-53	12.9	116
306	Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1377-84	3.8	116
305	Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography-tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 3175-88	4.4	113
304	Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. <i>Environmental Pollution</i> , 2012 , 165, 241-9	9.3	110
303	Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 7569-7586	5.7	109
302	Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. <i>Journal of Environmental Sciences</i> , 2010 , 22, 615-20	6.4	108
301	Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. <i>Science of the Total Environment</i> , 2009 , 407, 5147-55	10.2	107

300	Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography-tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2011 , 1218, 5328-35	4.5	104	
299	Steroids in a typical swine farm and their release into the environment. Water Research, 2012, 46, 3754	- 68 2.5	103	
298	Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 87-94	3.8	103	
297	Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk. <i>Water Research</i> , 2016 , 106, 562-570	12.5	102	
296	Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. <i>Environmental Science and Pollution Research</i> , 2011 , 19, 2918-29	5.1	101	
295	Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. <i>Environment International</i> , 2017 , 108, 246-252	12.9	100	
294	Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 482-91		95	
293	Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. <i>Science of the Total Environment</i> , 2017 , 589, 46-55	10.2	94	
292	Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. <i>Science of the Total Environment</i> , 2018 , 616-617, 816-823	10.2	94	
291	Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China. <i>Science of the Total Environment</i> , 2017 , 590-591, 611-619	10.2	93	
290	Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. <i>Journal of Hazardous Materials</i> , 2018 , 343, 140-148	12.8	90	
289	Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. <i>Science of the Total Environment</i> , 2014 , 490, 708-14	10.2	90	
288	Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. <i>Marine Pollution Bulletin</i> , 2015 , 95, 365-73	6.7	89	
287	Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 86-92	7	88	
286	China Must Reduce Its Antibiotic Use. Environmental Science & Environmental Sc	10.3	85	
285	Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 1794-803	5.1	85	
284	Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. <i>Environmental Pollution</i> , 2015 , 200, 53-63	9.3	84	
283	Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. <i>Chemosphere</i> , 2019 , 217, 437-446	8.4	83	

282	Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 813-21		82
281	Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2018-27	4.3	80
280	Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. <i>Chemosphere</i> , 2013 , 90, 1281-8	8.4	80
279	Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation. Journal of Hazardous Materials, 2011 , 186, 227-35	12.8	79
278	Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. <i>Environmental Pollution</i> , 2012 , 170, 190-201	9.3	78
277	Fate of veterinary antibiotics during animal manure composting. <i>Science of the Total Environment</i> , 2019 , 650, 1363-1370	10.2	78
276	Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 107, 192-9	7	76
275	Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region. <i>Water Research</i> , 2014 , 58, 269-79	12.5	76
274	Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. <i>Environmental Pollution</i> , 2019 , 251, 892-900	9.3	74
273	Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. <i>Applied Microbiology and Biotechnology</i> , 2012 , 95, 1615-23	5.7	74
272	Emission estimation and multimedia fate modeling of seven steroids at the river basin scale in China. <i>Environmental Science & Environmental Science &</i>	10.3	72
271	Oxidation of benzophenone-3 during water treatment with ferrate(VI). Water Research, 2013, 47, 2458-	662 .5	71
270	Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2015 , 160, 172-9	5.1	70
269	Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. <i>Water Research</i> , 2008 , 42, 1133-41	12.5	69
268	Fate and removal of antibiotics and antibiotic resistance genes in hybrid constructed wetlands. <i>Environmental Pollution</i> , 2019 , 249, 894-903	9.3	67
267	Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A. <i>Water Research</i> , 2014 , 62, 211-9	12.5	66
266	Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3229-36		66
265	Degradation behavior of sulfadiazine in soils under different conditions. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2009 , 44, 241-8	2.2	66

(2015-2014)

264	Analysis of 21 progestagens in various matrices by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 7299-311	4.4	61	
263	Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China. <i>Chemosphere</i> , 2014 , 114, 16-25	8.4	61	
262	Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 87, 10-6	7	61	
261	Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China. <i>Science of the Total Environment</i> , 2014 , 493, 580-7	10.2	58	
260	Triclosan: its occurrence, fate and effects in the Australian environment. <i>Water Science and Technology</i> , 2011 , 63, 598-604	2.2	58	
259	Laboratory and field studies on the degradation of fipronil in a soil. <i>Soil Research</i> , 2002 , 40, 1095	1.8	58	
258	Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions. <i>Environmental Chemistry</i> , 2010 , 7, 370	3.2	57	
257	Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems. <i>Science of the Total Environment</i> , 2018 , 639, 1421-1431	10.2	57	
256	Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography-mass spectrometry. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2010 , 45, 152-61	2.2	56	
255	Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. Journal of Hazardous Materials, 2017 , 329, 310-320	12.8	54	
254	Personal care products in wild fish in two main Chinese rivers: Bioaccumulation potential and human health risks. <i>Science of the Total Environment</i> , 2018 , 621, 1093-1102	10.2	54	
253	Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2208-15	3.8	54	
252	The occurrence and ecological risks of endocrine disrupting chemicals in sewage effluents from three different sewage treatment plants, and in natural seawater from a marine reserve of Hong Kong. <i>Marine Pollution Bulletin</i> , 2014 , 85, 352-62	6.7	52	
251	Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions. <i>Journal of Contaminant Hydrology</i> , 2013 , 151, 131-9	3.9	52	
250	Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. <i>Science of the Total Environment</i> , 2020 , 734, 13	39 023	51	
249	Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation. <i>Journal of Hazardous Materials</i> , 2016 , 320, 296-303	12.8	50	
248	Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils. <i>Science of the Total Environment</i> , 2014 , 470-471, 1078-86	10.2	50	
247	Steroids in marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioconcentration, and human dietary exposure. <i>Science of the Total Environment</i> , 2015 , 502, 400-7	10.2	49	

246	Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 417-25	7	48
245	Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1705-11	3.8	48
244	Occurrence and removal of progestagens in two representative swine farms: Effectiveness of lagoon and digester treatment. <i>Water Research</i> , 2015 , 77, 146-154	12.5	47
243	Dissipation of oxytetracycline in soils under different redox conditions. <i>Environmental Pollution</i> , 2009 , 157, 2704-9	9.3	47
242	Variation of antibiotic resistome during commercial livestock manure composting. <i>Environment International</i> , 2020 , 136, 105458	12.9	47
241	Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate. <i>Chemical Engineering Journal</i> , 2017 , 321, 113-122	14.7	45
240	Real-world carbon nanoparticle exposures induce brain and gonadal alterations in zebrafish (Danio rerio) as determined by biospectroscopy techniques. <i>Analyst, The</i> , 2015 , 140, 2687-95	5	45
239	Occurrence and dissipation of benzotriazoles and benzotriazole ultraviolet stabilizers in biosolid-amended soils. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 761-7	3.8	45
238	Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water. <i>Environmental Chemistry</i> , 2011 , 8, 581	3.2	45
237	Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: A review. <i>Science of the Total Environment</i> , 2019 , 661, 407-421	10.2	44
236	Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna. <i>Ecotoxicology</i> , 2013 , 22, 1384-94	2.9	44
235	Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. <i>Science of the Total Environment</i> , 2019 , 660, 358-365	10.2	44
234	Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles. <i>Water Research</i> , 2011 , 45, 2261-9	12.5	43
233	Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. <i>Journal of Experimental Marine Biology and Ecology</i> , 2011 , 405, 128-132	2.1	43
232	The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. <i>Aquatic Toxicology</i> , 2014 , 150, 66-72	5.1	42
231	Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater. <i>Water Research</i> , 2020 , 182, 115975	12.5	41
230	Desorption kinetics of sulfonamide and trimethoprim antibiotics in soils assessed with diffusive gradients in thin-films. <i>Environmental Science & Environmental & Env</i>	10.3	41
229	Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 802-13	4.3	41

228	Passive sampling: A cost-effective method for understanding antibiotic fate, behaviour and impact. <i>Environment International</i> , 2015 , 85, 284-91	12.9	40	
227	Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. <i>Environment International</i> , 2020 , 136, 105484	12.9	40	
226	Biodegradation of the ultraviolet filter benzophenone-3 under different redox conditions. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 289-95	3.8	40	
225	Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. <i>Water Research</i> , 2020 , 175, 115656	12.5	38	
224	Microbial diversity and antibiotic resistome in swine farm environments. <i>Science of the Total Environment</i> , 2019 , 685, 197-207	10.2	37	
223	Bioaccumulation, metabolism, and risk assessment of phenolic endocrine disrupting chemicals in specific tissues of wild fish. <i>Chemosphere</i> , 2019 , 226, 607-615	8.4	37	
222	Sorption of fipronil and its metabolites on soils from South Australia. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2001 , 36, 545-58	2.2	37	
221	Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia magna. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2016 , 97, 84-90	2.7	37	
220	Pharmaceutical pollution of the world® rivers <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	37	
219	Rapid resolution liquid chromatography-tandem mass spectrometry method for the determination of endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) in wastewater irrigated soils. <i>Journal of Environmental Science and Health - Part B Pesticides, Food</i>	2.2	36	
218	Photocatalytic degradation and detoxification of o-chloroaniline in the gas phase: Mechanistic consideration and mutagenicity assessment of its decomposed gaseous intermediate mixture. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 140-146	21.8	35	
217	Expression patterns of metallothionein, cytochrome P450 1A and vitellogenin genes in western mosquitofish (Gambusia affinis) in response to heavy metals. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 105, 97-102	7	34	
216	Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. <i>Environment International</i> , 2020 , 139, 10	15779	34	
215	Contamination profile of antibiotic resistance genes in ground water in comparison with surface water. <i>Science of the Total Environment</i> , 2020 , 715, 136975	10.2	33	
214	Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: kinetics, mechanistic investigations and toxicity evaluation. <i>Water Research</i> , 2014 , 52, 83-91	12.5	33	
213	Occurrence and dissipation of three azole biocides climbazole, clotrimazole and miconazole in biosolid-amended soils. <i>Science of the Total Environment</i> , 2013 , 452-453, 377-83	10.2	33	
212	Developmental and reproductive characteristics of western mosquitofish (Gambusia affinis) exposed to paper mill effluent in the Dengcun River, Sihui, South China. <i>Aquatic Toxicology</i> , 2011 , 103, 140-9	5.1	33	
211	Simultaneous determination of 24 personal care products in fish muscle and liver tissues using QuEChERS extraction coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometer analyses. <i>Analytical and Bioanalytical</i>	4.4	33	

210	Biomarker distributions in crude oils and source rocks from different sedimentary environments. <i>Chemical Geology</i> , 1991 , 93, 61-78	4.2	32
209	Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 148, 393-401	7	32
208	Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus. <i>Environmental Pollution</i> , 2018 , 240, 534-540	9.3	32
207	Uptake and Translocation of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) by Wetland Plants: Tissue- and Cell-Level Distribution Visualization with Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) and Transmission Electron Microscopy	10.3	31
206	Regulation of reproduction- and biomarker-related gene expression by sex steroids in the livers and ovaries of adult female western mosquitofish (Gambusia affinis). <i>Comparative Biochemistry and Physiology Part A, Molecular & Employed Physiology</i> , 2012 , 162, 36-43	2.6	31
205	Dissipation of herbicides in soil and grapes in a South Australian vineyard. <i>Agriculture, Ecosystems and Environment</i> , 2000 , 78, 283-289	5.7	31
204	Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea. <i>Science of the Total Environment</i> , 2015 , 536, 99-107	10.2	30
203	Masculinization and reproductive effects in western mosquitofish (Gambusia affinis) after long-term exposure to androstenedione. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 147, 509-515	7	30
202	Dydrogesterone Causes Male Bias and Accelerates Sperm Maturation in Zebrafish (Danio rerio). <i>Environmental Science & Environmental Science & Environm</i>	10.3	30
201	Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 776-83	3.8	30
200	Altered development and reproduction in western mosquitofish (Gambusia affinis) found in the Hanxi River, southern China. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2607-15	3.8	30
199	In situ measurement of solution concentrations and fluxes of sulfonamides and trimethoprim antibiotics in soils using o-DGT. <i>Talanta</i> , 2015 , 132, 902-8	6.2	29
198	A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment. <i>Journal of Cleaner Production</i> , 2020 , 265, 121787	10.3	29
197	Release behavior of triazine residues in stabilised contaminated soils. <i>Environmental Pollution</i> , 2005 , 134, 71-7	9.3	29
196	The effects of progesterone on transcriptional expression profiles of genes associated with hypothalamic-pituitary-adrenal axes during the early development of zebrafish (Danio rerio). <i>Chemosphere</i> , 2015 , 128, 199-206	8.4	28
195	Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. <i>Science of the Total Environment</i> , 2020 , 741, 140482	10.2	28
194	Assessment of hormonal activities and genotoxicity of industrial effluents using in vitro bioassays combined with chemical analysis. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1273-82	3.8	28
193	Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 324-32	4.3	27

(2015-2014)

192	Chemical oxidation of sulfadiazine by the Fenton process: kinetics, pathways, toxicity evaluation. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014 , 49, 909-16	2.2	27
191	Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1967-75	3.8	27
190	Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 76, 143-52	7	27
189	Uptake and Disposition of Select Pharmaceuticals by Bluegill Exposed at Constant Concentrations in a Flow-Through Aquatic Exposure System. <i>Environmental Science & Environmental Science & Environmen</i>	14 ¹ 44 ² 1.3	26
188	Dydrogesterone exposure induces zebrafish ovulation but leads to oocytes over-ripening: An integrated histological and metabolomics study. <i>Environment International</i> , 2019 , 128, 390-398	12.9	26
187	Feminization and masculinization of western mosquitofish (Gambusia affinis) observed in rivers impacted by municipal wastewaters. <i>Scientific Reports</i> , 2016 , 6, 20884	4.9	26
186	Antibiotic resistance and genetic diversity of Escherichia coli isolates from traditional and integrated aquaculture in South China. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2013 , 48, 999-1013	2.2	26
185	Typical azole biocides in biosolid-amended soils and plants following biosolid applications. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 6198-206	5.7	26
184	New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. <i>Aquatic Toxicology</i> , 2019 , 207, 197-207	5.1	26
183	Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process. <i>Science of the Total Environment</i> , 2019 , 665, 91-99	10.2	25
182	A time-course transcriptional kinetics of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes in zebrafish eleutheroembryos after exposure to norgestrel. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 112-9	3.8	25
181	Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China. <i>Science of the Total Environment</i> , 2015 , 520, 39-48	10.2	25
180	Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 2191-2203	4.7	24
179	Degradation of climbazole by UV/chlorine process: Kinetics, transformation pathway and toxicity evaluation. <i>Chemosphere</i> , 2019 , 219, 243-249	8.4	24
178	Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China. <i>Chemosphere</i> , 2018 , 201, 644-654	8.4	23
177	Photolysis of benzotriazole and formation of its polymerised photoproducts in aqueous solutions under UV irradiation. <i>Environmental Chemistry</i> , 2011 , 8, 174	3.2	23
176	Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale. <i>Science of the Total Environment</i> , 2020 , 733, 139383	10.2	23
175	Basin-scale emission and multimedia fate of triclosan in whole China. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10130-43	5.1	22

174	Biological degradation and microbial function effect of norfloxacin in a soil under different conditions. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2012 , 47, 288-95	2.2	22
173	Persistence and movement of fipronil termiticide with under-slab and trenching treatments. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2045-50	3.8	22
172	Kinetics and mechanism of reactive radical mediated fluconazole degradation by the UV/chlorine process: Experimental and theoretical studies. <i>Chemical Engineering Journal</i> , 2020 , 402, 126224	14.7	22
171	Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. <i>Science of the Total Environment</i> , 2019 , 690, 1110-1119	10.2	21
170	Herbicide residues in grapes and wine. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 1999 , 34, 397-411	2.2	21
169	Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. <i>Environmental Pollution</i> , 2020 , 263, 114361	9.3	20
168	Photodegradation of the azole fungicide climbazole by ultraviolet irradiation under different conditions: Kinetics, mechanism and toxicity evaluation. <i>Journal of Hazardous Materials</i> , 2016 , 318, 794-	8 01 ⁸	20
167	Three classes of steroids in typical freshwater aquaculture farms: Comparison to marine aquaculture farms. <i>Science of the Total Environment</i> , 2017 , 609, 942-950	10.2	20
166	On-line solid-phase extraction and fluorescence detection of selected endocrine disrupting chemicals in water by high-performance liquid chromatography. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2002 , 37, 225-34	2.2	20
165	A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers. <i>Complexity</i> , 2018 , 2018, 1-11	1.6	20
164	Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. <i>Environment International</i> , 2021 , 155, 106594	12.9	20
163	Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption. <i>Environmental Pollution</i> , 2017 , 228, 72-81	9.3	19
162	Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic resistance risk. <i>Science of the Total Environment</i> , 2020 , 712, 136518	10.2	19
161	Physiological responses and gene expression changes in the western mosquitofish (Gambusia affinis) exposed to progesterone at environmentally relevant concentrations. <i>Aquatic Toxicology</i> , 2017 , 192, 69-77	5.1	18
160	Bioaccumulation and risks of 24 personal care products in plasma of wild fish from the Yangtze River, China. <i>Science of the Total Environment</i> , 2019 , 665, 810-819	10.2	18
159	Multimedia modeling of the fate of triclosan and triclocarban in the Dongjiang River Basin, South China and comparison with field data. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 2142-52	4.3	18
158	Diet-sourced carbon-based nanoparticles induce lipid alterations in tissues of zebrafish (Danio rerio) with genomic hypermethylation changes in brain. <i>Mutagenesis</i> , 2017 , 32, 91-103	2.8	18
157	Field dissipation of four personal care products in biosolids-amended soils in North China. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2413-21	3.8	18

156	Degradation of Six Selected Ultraviolet Filters in Aquifer Materials Under Various Redox Conditions. <i>Ground Water Monitoring and Remediation</i> , 2013 , 33, 79-88	1.4	18
155	Sorption of pesticides used in banana production on soils of Ecuador. <i>Soil Research</i> , 2002 , 40, 1085	1.8	18
154	The degradation of oxadiazon and oxyfluorfen by photolysis. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 1999 , 34, 549-567	2.2	18
153	Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. <i>Journal</i>	4.5	17
152	Biocides in the river system of a highly urbanized region: A systematic investigation involving runoff input. <i>Science of the Total Environment</i> , 2018 , 624, 1023-1030	10.2	17
151	Reproductive effects of synthetic progestin norgestrel in zebrafish (Danio rerio). <i>Chemosphere</i> , 2018 , 190, 17-24	8.4	17
150	Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm. <i>Environmental Science & Environmental & Envir</i>	10.3	17
149	Analysis of type 2 metallothionein gene from mangrove species (Kandelia candel). <i>Trees - Structure and Function</i> , 2012 , 26, 1537-1544	2.6	17
148	Attenuation of Two Estrogen Compounds in Aquifer Materials Supplemented with Sewage Effluent. <i>Ground Water Monitoring and Remediation</i> , 2004 , 24, 102-107	1.4	17
147	Simultaneous Determination of Imidacloprid, Thiacloprid, and Thiamethoxam in Soil and Water by High-performance Liquid Chromatography with Diode-array Detection. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2004 , 39, 737-746	2.2	17
146	Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. <i>Fish and Shellfish Immunology</i> , 2020 , 97, 283-293	4.3	17
145	Highly enhanced biodegradation of pharmaceutical and personal care products in a novel tidal flow constructed wetland with baffle and plants. <i>Water Research</i> , 2021 , 193, 116870	12.5	17
144	Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. <i>Science of the Total Environment</i> , 2016 , 563-564, 273-81	10.2	17
143	Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. <i>Environment International</i> , 2021 , 153, 106543	12.9	17
142	Endocrine disrupting effects in western mosquitofish Gambusia affinis in two rivers impacted by untreated rural domestic wastewaters. <i>Science of the Total Environment</i> , 2019 , 683, 61-70	10.2	16
141	A new tool for assessing sediment quality based on the Weight of Evidence approach and grey TOPSIS. <i>Science of the Total Environment</i> , 2015 , 537, 369-76	10.2	16
140	Development and application of whole-sediment toxicity test using immobilized freshwater microalgae Pseudokirchneriella subcapitata. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 377-86	3.8	16
139	Hormonal effects of tetrabromobisphenol A using a combination of in vitro and in vivo assays. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 157, 344-51	3.2	16

138	Joint antibacterial activity of soil-adsorbed antibiotics trimethoprim and sulfamethazine. <i>Science of the Total Environment</i> , 2015 , 506-507, 58-65	10.2	15
137	Progesterone and norgestrel alter transcriptional expression of genes along the hypothalamic-pituitary-thyroid axis in zebrafish embryos-larvae. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2015 , 167, 101-7	3.2	15
136	A year-long passive sampling of phenolic endocrine disrupting chemicals in the East River, South China. <i>Environment International</i> , 2020 , 143, 105936	12.9	15
135	Occurrence and mass loads of biocides in plastic debris from the Pearl River system, South China. <i>Chemosphere</i> , 2020 , 246, 125771	8.4	15
134	Swine farm wastewater discharge causes masculinization of western mosquitofish (Gambusia affinis). <i>Environment International</i> , 2019 , 123, 132-140	12.9	15
133	Contamination of drinking water by neonicotinoid insecticides in China: Human exposure potential through drinking water consumption and percutaneous penetration. <i>Environment International</i> , 2021 , 156, 106650	12.9	15
132	The effects of binary mixtures of estradiol and progesterone on transcriptional expression profiles of genes involved in hypothalamic-pituitary-gonadal axis and circadian rhythm signaling in embryonic zebrafish (Danio rerio). <i>Ecotoxicology and Environmental Safety</i> , 2019 , 174, 540-548	7	14
131	Evaluation of estrogenic activity in the Pearl River by using effect-directed analysis. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 21692-21702	5.1	14
130	Changes in Histopathology, Enzyme Activities, and the Expression of Relevant Genes in Zebrafish (Danio rerio) Following Long-Term Exposure to Environmental Levels of Thallium. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2017 , 99, 574-581	2.7	14
129	Estrogenic activity and identification of potential xenoestrogens in a coking wastewater treatment plant. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 112, 238-46	7	14
128	Bioactivity of POPs and their effects in mosquitofish in Sydney Olympic Park, Australia. <i>Science of the Total Environment</i> , 2009 , 407, 3721-30	10.2	14
127	Rapid masculinization and effects on the liver of female western mosquitofish (Gambusia affinis) by norethindrone. <i>Chemosphere</i> , 2019 , 216, 94-102	8.4	14
126	Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	14
125	Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 346-353	3.8	13
124	Aqueous chlorination of benzodiazepines diazepam and oxazepam: Kinetics, transformation products and reaction pathways. <i>Chemical Engineering Journal</i> , 2018 , 354, 1100-1109	14.7	13
123	Organophosphate flame retardants and bisphenol A in childrenß urine in Hong Kong: has the burden been underestimated?. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 183, 109502	7	13
122	Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	13
121	Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin. <i>Environmental Pollution</i> , 2020 , 260, 113996	9.3	13

120	Antibiotic resistance genes in surface water and groundwater from mining affected environments. <i>Science of the Total Environment</i> , 2021 , 772, 145516	10.2	13
119	Spatial distribution and environmental implications of heavy metals in typical lead (Pb)-zinc (Zn) mine tailings impoundments in Guangdong Province, South China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 36702-36711	5.1	13
118	Per- and polyfluoroalkyl substances (PFASs) in the soil-plant system: Sorption, root uptake, and translocation. <i>Environment International</i> , 2021 , 156, 106642	12.9	13
117	Spatial distribution of perfluoroalkyl substances in surface sediments of five major rivers in China. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 68, 566-76	3.2	12
116	Sulfate radical-induced destruction of emerging contaminants using traces of cobalt ions as catalysts. <i>Chemosphere</i> , 2020 , 256, 127061	8.4	12
115	Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model. <i>Science of the Total Environment</i> , 2020 , 706, 135691	10.2	12
114	Transcriptional and Biochemical Alterations in Zebrafish Eleuthero-Embryos (Danio rerio) After Exposure to Synthetic Progestogen Dydrogesterone. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2017 , 99, 39-45	2.7	11
113	Adaptation of methane recovery, sludge characteristics and evolution of microbial community response to elevated nitrate under the methanogenic condition. <i>Journal of Cleaner Production</i> , 2020 , 258, 120713	10.3	11
112	Emerging contaminants in aquatic environments and coastal waters affected by urban wastewater discharge in Thailand: An ecological risk perspective. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 204, 110952	7	11
111	Occurrence and fate of androgens, progestogens and glucocorticoids in two swine farms with integrated wastewater treatment systems. <i>Water Research</i> , 2021 , 192, 116836	12.5	11
110	Dydrogesterone affects the transcription of genes in GnRH and steroidogenesis pathways and increases the frequency of atretic follicles in zebrafish (Danio rerio). <i>Chemosphere</i> , 2019 , 216, 725-732	8.4	11
109	Responses of aerobic granular sludge to fluoroquinolones: Microbial community variations, and antibiotic resistance genes. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125527	12.8	11
108	Transcriptional and histological alterations in gonad of adult zebrafish after exposure to the synthetic progestin norgestrel. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 3267-3276	3.8	10
107	Dydrogesterone affects the transcription of genes in visual cycle and circadian rhythm network in the eye of zebrafish. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 183, 109556	7	10
106	Modulation of transcription of genes related to the hypothalamic-pituitary-gonadal and the hypothalamic-pituitary-adrenal axes in zebrafish (Danio rerio) embryos/larvae by androstenedione. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 156, 403-408	7	10
105	Distribution of inorganic and organic contaminants in sediments from Sydney Olympic Park and the surrounding Sydney metropolitan area. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 1687-96		10
104	Microbial transformation of progesterone and dydrogesterone by bacteria from swine wastewater: Degradation kinetics and products identification. <i>Science of the Total Environment</i> , 2020 , 701, 134930	10.2	10
103	Biodegradation of typical azole fungicides in activated sludge under aerobic conditions. <i>Journal of Environmental Sciences</i> , 2021 , 103, 288-297	6.4	10

102	New insight into the negative impact of imidazolium-based ionic liquid [Cmim]Cl on Hela cells: From membrane damage to biochemical alterations. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 1116	52 ⁷ 9	10
101	Variations of antibiotic resistome in swine wastewater during full-scale anaerobic digestion treatment. <i>Environment International</i> , 2021 , 155, 106694	12.9	10
100	Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources. <i>Chemosphere</i> , 2021 , 283, 131301	8.4	10
99	Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental</i>	2.3	9
98	Co-exposure of C60 fullerene with benzo[a]pyrene results in enhanced biological effects in cells as determined by Fourier-transform infrared spectroscopy. <i>Environmental Science: Nano</i> , 2017 , 4, 1404-14	18.1	9
97	Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2631-2639	3.8	9
96	Medroxyprogesterone acetate affects eye growth and the transcription of associated genes in zebrafish. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 193, 110371	7	9
95	Airborne antibiotic resistance genes in Hong Kong kindergartens. <i>Environmental Pollution</i> , 2020 , 260, 114009	9.3	9
94	Levofloxacin and sulfamethoxazole induced alterations of biomolecules in Pseudokirchneriella subcapitata. <i>Chemosphere</i> , 2020 , 253, 126722	8.4	9
93	Fate and Occurrence of Pharmaceuticals in the Aquatic Environment (Surface Water and Sediment). <i>Comprehensive Analytical Chemistry</i> , 2013 , 453-557	1.9	9
92	Benthic macroinvertebrate assemblages in remediated wetlands around Sydney, Australia. <i>Ecotoxicology</i> , 2010 , 19, 1589-600	2.9	9
91	Benthic invertebrate and microbial biodiversity in sub-tropical urban rivers: Correlations with environmental variables and emerging chemicals. <i>Science of the Total Environment</i> , 2020 , 709, 136281	10.2	9
90	Distribution and mass loads of xenoestrogens bisphenol a, 4-nonylphenol, and 4-tert-octylphenol in rainfall runoff from highly urbanized regions: A comparison with point sources of wastewater. Journal of Hazardous Materials, 2021, 401, 123747	12.8	9
89	Plasticizer contamination in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. <i>Environmental Pollution</i> , 2021 , 271, 116394	9.3	9
88	Transcriptional alterations induced by binary mixtures of ethinylestradiol and norgestrel during the early development of zebrafish (Danio rerio). <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2017 , 195, 60-67	3.2	8
87	Medroxyprogesterone acetate affects sex differentiation and spermatogenesis in zebrafish. <i>Aquatic Toxicology</i> , 2019 , 212, 70-76	5.1	8
86	Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms. <i>Environmental Pollution</i> , 2019 , 248, 676-683	9.3	8
85	Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. <i>Environment International</i> , 2021 , 158, 106927	12.9	8

84	The fate of sulfonamides in the process of phytoremediation in hydroponics. <i>Water Research</i> , 2021 , 198, 117145	12.5	8
83	Occurrence, fate and mass loading of benzodiazepines and their transformation products in eleven wastewater treatment plants in Guangdong province, China. <i>Science of the Total Environment</i> , 2021 , 755, 142648	10.2	8
82	Crucial roles of 3D-MoO-PBC cocatalytic electrodes in the enhanced degradation of imidacloprid in heterogeneous electro-Fenton system: Degradation mechanisms and toxicity attenuation. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126556	12.8	8
81	Insights into the sediment toxicity of personal care products to freshwater oligochaete worms using Fourier transform infrared spectroscopy. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 172, 296-2	302	7
80	Removal of Antibiotics and Antibiotic Resistance Genes from Domestic Sewage by a Subsurface Wastewater Infiltration System with Long-Term Operations. <i>Environmental Engineering Science</i> , 2019 , 36, 863-872	2	7
79	Field dissipation and plant uptake of benzotriazole ultraviolet stabilizers in biosolid-amended soils. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 558-66	4.3	7
78	Reaction of antibiotic sulfadiazine with manganese dioxide in aqueous phase: Kinetics, pathways and toxicity assessment. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2017 , 52, 135-143	2.3	7
77	Phthalates in plastic bottled non-alcoholic beverages from China and estimated dietary exposure in adults. <i>Food Additives and Contaminants: Part B Surveillance</i> , 2017 , 10, 44-50	3.3	7
76	Contamination and screening level toxicity of sediments from remediated and unremediated wetlands near Sydney, Australia. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2052-60	3.8	7
75	Removal of Sulfadiazine Using 3D Interconnected Petal-Like Magnetic Reduced Graphene Oxide (MrGO) Nanocomposites. <i>Water (Switzerland)</i> , 2020 , 12, 1933	3	7
74	Transformation of diazepam in water during UV/chlorine and simulated sunlight/chlorine advanced oxidation processes. <i>Science of the Total Environment</i> , 2020 , 746, 141332	10.2	7
73	Remediation and Mitigation Strategies 2018 , 207-217		7
72	Agricultural Plastic Pollution in China: Generation of Plastic Debris and Emission of Phthalic Acid Esters from Agricultural Films. <i>Environmental Science & Esters from Agricultural Films</i> . <i>Environmental Science & Esters from Agricultural Films</i> .	10.3	7
71	Profile and removal of bisphenol analogues in hospital wastewater, landfill leachate, and municipal wastewater in South China. <i>Science of the Total Environment</i> , 2021 , 790, 148269	10.2	7
70	Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127029	12.8	7
69	Fate and effects of sediment-associated polycyclic musk HHCB in subtropical freshwater microcosms. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 169, 902-910	7	6
68	Endocrine disruption in western mosquitofish from open and closed aquatic ecosystems polluted by swine farm wastewaters. <i>Environment International</i> , 2020 , 137, 105552	12.9	6
67	Effects of steroid hormones on reproduction- and detoxification-related gene expression in adult male mosquitofish, Gambusia affinis. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2013 , 158, 36-43	3.2	6

66	How much do human and livestock actually contribute to steroids emission and surface water pollution from past to the future: A global research. <i>Science of the Total Environment</i> , 2021 , 772, 145558	3 ^{10.2}	6
65	Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. <i>Environmental Pollution</i> , 2021 , 270, 116219	9.3	6
64	Environmental perspective of COVID-19: Atmospheric and wastewater environment in relation to pandemic. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 219, 112297	7	6
63	Selective diffusive gradients in thin-films with molecularly imprinted polymer for measuring fluoroquinolone antibiotics in waters. <i>Science of the Total Environment</i> , 2021 , 790, 148194	10.2	6
62	Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone. <i>Aquatic Toxicology</i> , 2019 , 214, 105242	5.1	5
61	Ultra violet filters in the urine of preschool children and drinking water. <i>Environment International</i> , 2019 , 133, 105246	12.9	5
60	Photodegradation of three benzotriazoles induced by four FeIIIBarboxylate complexes in water under ultraviolet irradiation. <i>Environmental Chemistry</i> , 2013 , 10, 135	3.2	5
59	Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 229, 113063	7	5
58	Performance and mechanism in degradation of typical antibiotics and antibiotic resistance genes by magnetic resin-mediated UV-Fenton process. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 227, 11290	8 7	5
57	Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China. <i>Environmental Pollution</i> , 2020 , 258, 113660	9.3	5
56	Selenomethionine exposure affects chondrogenic differentiation and bone formation in Japanese medaka (Oryzias latipes). <i>Journal of Hazardous Materials</i> , 2020 , 387, 121720	12.8	5
55	Fate and effects of triclosan in subtropical river biofilms. <i>Aquatic Toxicology</i> , 2019 , 212, 11-19	5.1	4
54	Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. <i>Aquatic Toxicology</i> , 2018 , 202, 117-125	5.1	4
53	Screening of organic chemicals in surface water of the North River by high resolution mass spectrometry. <i>Chemosphere</i> , 2021 , 290, 133174	8.4	4
52	Trace analysis of 28 antibiotics in plant tissues (root, stem, leaf and seed) by optimized QuEChERS pretreatment with UHPLC-MS/MS detection. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2020 , 1161, 122450	3.2	4
51	Optimized constructed wetlands enhance the removal and reduce the risks of steroid hormones in domestic wastewater. <i>Science of the Total Environment</i> , 2021 , 757, 143773	10.2	4
50	Endocrine disrupting effects of binary mixtures of 17Eestradiol and testosterone in adult female western mosquitofish (Gambusia affinis). <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111566	7	4
49	Enhanced Photoffenton Removal Efficiency with Core-Shell Magnetic Resin Catalyst for Textile Dyeing Wastewater Treatment. <i>Water (Switzerland)</i> , 2021 , 13, 968	3	4

Ecological Risk Assessment of Pesticides Used in Agriculture 2018, 67-79 48 4 Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Science of the Total 10.2 47 Environment, 2021, 787, 147582 Continuous input of organic ultraviolet filters and benzothiazoles threatens the surface water and sediment of two major rivers in the Pearl River Basin. *Science of the Total Environment*, **2021**, 798, 1492990.2 4 Removal of Personal Care Products Through Ferrate(VI) Oxidation Treatment. Handbook of 0.8 45 Environmental Chemistry, 2014, 355-373 Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Science of 10.2 44 3 the Total Environment, 2021, 152042 Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions 43 10.2 of PFAS with soil surfaces.. Science of the Total Environment, 2022, 817, 152975 Occurrence, removal and mass loads of antiviral drugs in seven wastewater treatment plants with 42 12.5 3 various treatment processes. Water Research, 2021, 207, 117803 In situ measurement of an emerging persistent, mobile and toxic (PMT) substance - Melamine and 41 12.5 related triazines in waters by diffusive gradient in thin-films. Water Research, 2021, 206, 117752 Development and application of diffusive gradients in thin-films for in situ sampling of the bitterest 12.8 3 40 chemical - denatonium benzoate in waters. Journal of Hazardous Materials, 2021, 418, 126393 Photo-biodegradation of imidacloprid under blue light-emitting diodes with bacteria and 39 7.9 co-metabolic regulation. Environmental Research, 2021, 201, 111541 What is in Nigerian waters? Target and non-target screening analysis for organic chemicals. 38 8.4 3 Chemosphere, 2021, 284, 131546 The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a 10.2 37 water/sediment microcosm. Science of the Total Environment, 2019, 687, 1098-1106 Hypothetical scenarios estimating and simulating the fate of antibiotics: Implications for antibiotic 36 environmental pollution caused by farmyard manure application.. Science of the Total Environment, 10.2 2 2022, 822, 153177 Kinetics and Mechanism of Degradation of Reactive Radical-Mediated Probe Compounds by the 35 UV/Chlorine Process: Theoretical Calculation and Experimental Verification.. ACS Omega, 2022, 7, 5053-5063 Anthropogenic activities and seasonal properties jointly drive the assemblage of bacterial 10.2 34 communities in subtropical river basins. Science of the Total Environment, 2022, 806, 151476 Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Environmental 33 9.3 2 Pollution, 2021, 293, 118563 Suspect, non-target and target screening of pharmaceuticals and personal care products (PPCPs) in 10.2 2 32 a drinking water system. Science of the Total Environment, 2021, 808, 151866 The effects of the chemotherapy drug cyclophosphamide on the structure and functioning of freshwater communities under sub-tropical conditions: A mesocosm study. Science of the Total 31 10.2 2 Environment, 2022, 806, 150678

30	Levonorgestrel and dydrogesterone affect sex determination via different pathways in zebrafish. <i>Aquatic Toxicology</i> , 2021 , 240, 105972	5.1	2
29	Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). <i>Science of the Total Environment</i> , 2022 , 805, 150460	10.2	2
28	Building the new international science of the agricultureflood water invironment nexus in china and the world. <i>Ecosystem Health and Sustainability</i> , 2016 , 2, e01249	3.7	1
27	Endocrine Disrupting Chemicals. What? Where? 2012 , 3-17		1
26	Personal Care Products 2012 , 413-428		1
25	Diffusive gradients in thin films (DGT) probe for effectively sampling of per- and polyfluoroalkyl substances in waters and sediments. <i>Journal of Environmental Sciences</i> , 2022 , 121, 90-97	6.4	1
24	Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest. <i>Water Research</i> , 2021 , 209, 117892	12.5	1
23	Imidacloprid treatments induces cyanobacteria blooms in freshwater communities under sub-tropical conditions. <i>Aquatic Toxicology</i> , 2021 , 240, 105992	5.1	1
22	Uptake, elimination, and toxicokinetics of selected pharmaceuticals in multiple tissues of Nile tilapia (Oreochromis niloticus) exposed to environmentally relevant concentrations. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 226, 112874	7	1
21	A Novel Model with GA Evolving FWNN for Effluent Quality and Biogas Production Forecast in a Full-Scale Anaerobic Wastewater Treatment Process. <i>Complexity</i> , 2019 , 2019, 1-13	1.6	1
20	Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy. <i>Separation and Purification Technology</i> , 2022 , 289, 120735	8.3	1
19	Designing NAZO@BC electrodes for enhanced elimination of hydrophilic organic pollutants in heterogeneous electro-Fenton system: Insights into the detoxification mediated by O and DH <i>Journal of Hazardous Materials</i> , 2022 , 431, 128598	12.8	1
18	Transformation products of tetracyclines in three typical municipal wastewater treatment plants <i>Science of the Total Environment</i> , 2022 , 154647	10.2	1
17	Inference of emission history of neonicotinoid pesticides from marine sediment cores impacted by riverine runoff of a developed agricultural region: The Pearl River Basin, China <i>Water Research</i> , 2022 , 218, 118475	12.5	1
16	Influence of biofilms on the adsorption behavior of nine organic emerging contaminants on microplastics in field-laboratory exposure experiments <i>Journal of Hazardous Materials</i> , 2022 , 434, 1288	3 5 2.8	1
15	Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China <i>Science of the Total Environment</i> , 2022 , 837, 155705	10.2	1
14	Perfluorooctanoic acid (PFOA)-induced alterations of biomolecules in the wetland plant Alisma orientale <i>Science of the Total Environment</i> , 2022 , 820, 153302	10.2	0
13	Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 227, 112917	7	O

LIST OF PUBLICATIONS

12	Photo transformation of 5-methylbenzotriazole and 5-chlorobenzotriazole by UV irradiation: Influences of pH, salinity, metal species and humic acid. <i>Environmental Research</i> , 2021 , 194, 110678	7.9	О
11	Occurrence of Dechlorane series flame retardants in sediments from the Pearl River Delta, South China. <i>Environmental Pollution</i> , 2021 , 279, 116902	9.3	O
10	Dydrogesterone Affects the Transcription of Genes in Innate Immune and Coagulation Cascade in Zebrafish Embryos. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 106, 594-599	2.7	0
9	Lanthanum (III)-Coated Ceramic Filters in Point-of-Use Water Treatment for Bacterial Removal. <i>ACS ES&T Water</i> , 2022 , 2, 583-592		O
8	Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment <i>Environment International</i> , 2022 , 163, 107219	12.9	0
7	Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation <i>Environmental Pollution</i> , 2022 , 119452	9.3	O
6	Chemicals management and environmental assessment of chemicals in China. <i>Environmental Pollution</i> , 2012 , 165, 169	9.3	
5	Analysis and Fate of Emerging Pollutants during Water Treatment. <i>Journal of Analytical Methods in Chemistry</i> , 2013 , 2013, 256956	2	
4	Chromatographic Analysis of Endocrine Disrupting Chemicals in the Environment. <i>Chromatographic Science</i> , 2005 , 1241-1267		
3	Transgenerational effects of androstadienedione and androstenedione at environmentally relevant concentrations in zebrafish (Danio rerio). <i>Journal of Hazardous Materials</i> , 2022 , 423, 127261	12.8	
2	Dydrogesterone and levonorgestrel at environmentally relevant concentrations have antagonist effects with rhythmic oscillation in brain and eyes of zebrafish <i>Aquatic Toxicology</i> , 2022 , 248, 106177	5.1	
1	Rapid target and non-target screening method for determination of emerging organic chemicals in fish. <i>Journal of Chromatography A</i> , 2022 , 463185	4.5	