
Michael M Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Social housing promotes recovery of wheel running depressed by inflammatory pain and morphine withdrawal in male rats. Behavioural Brain Research, 2021, 396, 112912.	2.2	8
2	Use of home cage wheel running to assess the behavioural effects of administering a mu/delta opioid receptor heterodimer antagonist for spontaneous morphine withdrawal in the rat. Behavioural Brain Research, 2021, 397, 112953.	2.2	12
3	Comparative benefits of social housing and buprenorphine on wheel running depressed by morphine withdrawal in rats. Psychopharmacology, 2021, 238, 2895-2903.	3.1	3
4	Tetrahydrocannabinol (THC) Exacerbates Inflammatory Bowel Disease in Adolescent and Adult Female Rats. Journal of Pain, 2021, 22, 1040-1047.	1.4	5
5	Morphine restores and naloxone-precipitated withdrawal depresses wheel running in rats with hindpaw inflammation. Pharmacology Biochemistry and Behavior, 2021, 209, 173251.	2.9	5
6	â€~Reinventing the wheel' to advance the development of pain therapeutics. Behavioural Pharmacology, 2021, 32, 142-152.	1.7	26
7	Differences in antinociceptive signalling mechanisms following morphine and fentanyl microinjections into the rat periaqueductal gray. European Journal of Pain, 2020, 24, 617-624.	2.8	13
8	Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neuroscience and Biobehavioral Reviews, 2019, 100, 335-343.	6.1	118
9	Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats. Journal of Pain, 2019, 20, 1040-1047.	1.4	12
10	Medication overuse headache following repeated morphine, but not â^†9-tetrahydrocannabinol administration in the female rat. Behavioural Pharmacology, 2018, 29, 469-472.	1.7	15
11	Enhanced antinociception with repeated microinjections of apomorphine into the periaqueductal gray of male and female rats. Behavioural Pharmacology, 2018, 29, 234-240.	1.7	7
12	Anti-migraine effect of â^†9-tetrahydrocannabinol in the female rat. European Journal of Pharmacology, 2018, 818, 271-277.	3.5	34
13	Acute hyperalgesia and delayed dry eye after corneal abrasion injury. Pain Reports, 2018, 3, e664.	2.7	22
14	Depression of home cage wheel running: a reliable and clinically relevant method to assess migraine pain in rats. Journal of Headache and Pain, 2017, 18, 5.	6.0	36
15	Depression of home cage wheel running is an objective measure of spontaneous morphine withdrawal in rats with and without persistent pain. Pharmacology Biochemistry and Behavior, 2017, 156, 10-15.	2.9	20
16	Analysis of inflammation-induced depression of home cage wheel running in rats reveals the difference between opioid antinociception and restoration of function. Behavioural Brain Research, 2017, 317, 502-507.	2.2	32
17	Analysis of morphine-induced changes in the activity of periaqueductal gray neurons in the intact rat. Neuroscience, 2016, 335, 1-8.	2.3	7
18	Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. European Journal of Neuroscience, 2016, 44, 2667-2672.	2.6	16

#	Article	IF	CITATIONS
19	Home cage wheel running is an objective and clinically relevant method to assess inflammatory pain in male and female rats. Journal of Neuroscience Methods, 2016, 263, 115-122.	2.5	67
20	Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance. Behavioural Brain Research, 2016, 298, 17-24.	2.2	16
21	Functionally Selective Signaling for Morphine and Fentanyl Antinociception and Tolerance Mediated by the Rat Periaqueductal Gray. PLoS ONE, 2014, 9, e114269.	2.5	15
22	Contribution of Adenylyl Cyclase Modulation of Pre- and Postsynaptic GABA Neurotransmission to Morphine Antinociception and Tolerance. Neuropsychopharmacology, 2014, 39, 2142-2152.	5.4	39
23	Opioid Selective Antinociception Following Microinjection Into the Periaqueductal Gray of the Rat. Journal of Pain, 2014, 15, 1102-1109.	1.4	20
24	Chronic Inflammatory Pain Prevents Tolerance to the Antinociceptive Effect of Morphine Microinjected into the Ventrolateral Periaqueductal Gray of the Rat. Journal of Pain, 2013, 14, 1601-1610.	1.4	13
25	Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways. Synapse, 2013, 67, 94-108.	1.2	32
26	The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. Pharmacology Biochemistry and Behavior, 2013, 103, 444-449.	2.9	40
27	Differential Development of Antinociceptive Tolerance to Morphine and Fentanyl Is Not Linked to Efficacy in the Ventrolateral Periaqueductal Gray of the Rat. Journal of Pain, 2012, 13, 799-807.	1.4	26
28	Contribution of the rostral ventromedial medulla to post-anxiety induced hyperalgesia. Brain Research, 2012, 1450, 80-86.	2.2	8
29	Chronic psychostimulant exposure to adult, but not periadolescent rats reduces subsequent morphine antinociception. Pharmacology Biochemistry and Behavior, 2012, 101, 538-543.	2.9	2
30	The Influence of Non-Nociceptive Factors on Hot-Plate Latency in Rats. Journal of Pain, 2011, 12, 222-227.	1.4	75
31	Don't Throw the Hot Plate Out With the Bath Water. Journal of Pain, 2011, 12, 938-939.	1.4	2
32	Environmentally induced antinociception and hyperalgesia in rats and mice. Brain Research, 2011, 1415, 56-62.	2.2	13
33	Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. British Journal of Pharmacology, 2011, 164, 1322-1334.	5.4	197
34	Tolerance to the Antinociceptive Effect of Morphine in the Absence of Short-Term Presynaptic Desensitization in Rat Periaqueductal Gray Neurons. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 674-680.	2.5	49
35	Attenuation of dynaminâ€dependent internalization decreases antinociception during the expression of morphine tolerance. FASEB Journal, 2010, 24, 585.4.	0.5	0
36	Extracellular Signal-Regulated Kinase 1/2 Activation Counteracts Morphine Tolerance in the Periaqueductal Gray of the Rat. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 412-418.	2.5	43

#	Article	IF	CITATIONS
37	Behavioral Consequences of Delta-Opioid Receptor Activation in the Periaqueductal Gray of Morphine Tolerant Rats. Neural Plasticity, 2009, 2009, 1-7.	2.2	10
38	Drug dependent sex-differences in periaqueducatal gray mediated antinociception in the rat. Pain, 2009, 147, 210-216.	4.2	42
39	Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Research, 2009, 1295, 59-66.	2.2	26
40	Contribution of dopamine receptors to periaqueductal gray-mediated antinociception. Psychopharmacology, 2009, 204, 531-540.	3.1	79
41	Early methylphenidate exposure enhances morphine antinociception and tolerance in adult rats. Neuropharmacology, 2009, 57, 673-677.	4.1	7
42	Sexually dimorphic activation of the periaqueductal gray–rostral ventromedial medullary circuit during the development of tolerance to morphine in the rat. European Journal of Neuroscience, 2008, 27, 1517-1524.	2.6	55
43	Microinjection of the vehicle dimethyl sulfoxide (DMSO) into the periaqueductal gray modulates morphine antinociception. Brain Research, 2008, 1204, 53-58.	2.2	26
44	Repeated cannabinoid injections into the rat periaqueductal gray enhance subsequent morphine antinociception. Neuropharmacology, 2008, 55, 1219-1225.	4.1	44
45	Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla. Pain, 2008, 140, 376-386.	4.2	116
46	Tolerance to Repeated Morphine Administration Is Associated with Increased Potency of Opioid Agonists. Neuropsychopharmacology, 2008, 33, 2494-2504.	5.4	40
47	Behavioral and Electrophysiological Evidence for Opioid Tolerance in Adolescent Rats. Neuropsychopharmacology, 2007, 32, 600-606.	5.4	35
48	Analgesic tolerance to microinjection of the $\hat{1}$ 4-opioid agonist DAMGO into the ventrolateral periaqueductal gray. Neuropharmacology, 2007, 52, 1580-1585.	4.1	22
49	PAG mu opioid receptor activation underlies sex differences in morphine antinociception. Behavioural Brain Research, 2007, 177, 126-133.	2.2	64
50	Morphine Antinociceptive Potency on Chemical, Mechanical, and Thermal Nociceptive Tests in the Rat. Journal of Pain, 2006, 7, 358-366.	1.4	69
51	Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat. Pharmacology Biochemistry and Behavior, 2006, 85, 214-219.	2.9	62
52	Antinociceptive tolerance to morphine from repeated nociceptive testing in the rat. Brain Research, 2005, 1047, 65-71.	2.2	19
53	Intermittent dosing prolongs tolerance to the antinociceptive effect of morphine microinjection into the periaqueductal gray. Brain Research, 2005, 1059, 173-178.	2.2	19
54	Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: Comparison of opioid and GABA disinhibition. Behavioural Brain Research, 2005, 164, 61-66.	2.2	35

#	Article	IF	CITATIONS
55	Differential susceptibility of the PAG and RVM to tolerance to the antinociceptive effect of morphine in the rat. Pain, 2005, 113, 91-98.	4.2	35
56	Simultaneous analysis of the time course for changes in core body temperature, activity, and nociception following systemic administration of interleukin-1β in the rat. Brain Research, 2004, 996, 187-192.	2.2	12
57	Tolerance to repeated microinjection of morphine into the periaqueductal gray is associated with changes in the behavior of off- and on-cells in the rostral ventromedial medulla of rats. Pain, 2001, 89, 237-244.	4.2	50
58	Immobility accompanies the antinociception mediated by the rostral ventromedial medulla of the rat. Brain Research, 2000, 872, 276-281.	2.2	43
59	Tolerance to the antinociceptive effect of morphine microinjections into the ventral but not lateral–dorsal periaqueductal gray of the rat Behavioral Neuroscience, 1999, 113, 833-839.	1.2	58
60	Microinjection of morphine into the rostral ventromedial medulla produces greater antinociception in male compared to female rats. Brain Research, 1998, 796, 315-318.	2.2	104
61	Direct Comparison of Heat-Evoked Activity of Nociceptive Neurons in the Dorsal Horn With the Hindpaw Withdrawal Reflex in the Rat. Journal of Neurophysiology, 1998, 79, 174-180.	1.8	23
62	Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ. NeuroReport, 1997, 8, 3431-3434.	1.2	105
63	Descending modulation and nociceptive transmission. Pain Forum, 1996, 5, 23-27.	1.1	8
64	Activity of nociceptive modulatory neurons in the rostral ventromedial medulla associated with volume expansion-induced antinociception. Pain, 1993, 52, 1-9.	4.2	21
65	Analgesia, antianalgesia, and hyperalgesia: What role might neurons of the rostral ventromedial medulla play?. APS Journal, 1992, 1, 199-201.	0.2	0
66	Activity of neurons in the rostral medulla of the halothane-anesthetized rat during withdrawal from noxious heat. Brain Research, 1992, 582, 154-158.	2.2	14
67	Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Brain Research, 1991, 545, 17-23.	2.2	72
68	Stimulation of the periaqueductal gray matter of the rat produces a preferential ipsilateral antinociception. Brain Research, 1991, 567, 140-144.	2.2	28
69	Differences in Antinociception Evoked from Dorsal and Ventral Regions of the Caudal Periaqueductal Gray Matter. , 1991, , 139-150.		19
70	Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level. Brain Research, 1989, 502, 61-66.	2.2	118
71	Characterization of stimulation-produced analgesia from the nucleus tractus solitarius in the rat. Brain Research, 1989, 486, 175-180.	2.2	36
72	Characterization of the analgesic effects of the benzodiazepine antagonist, Ro 15-1788. Brain Research, 1987, 415, 367-370.	2.2	22

#	Article	IF	CITATIONS
73	Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat. Brain Research, 1987, 425, 356-359.	2.2	43
74	Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat. Brain Research, 1987, 423, 395-398.	2.2	35
75	Barbiturate-induced inhibition of a spinal nociceptive reflex: role of GABA mechanisms and descending modulation. Brain Research, 1987, 407, 307-311.	2.2	42
76	GABAergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat. Brain Research, 1987, 436, 223-228.	2.2	153
77	Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiology and Behavior, 1987, 39, 441-444.	2.1	102
78	Different effects of chronic nicotine treatment regimens on body weight and tolerance in the rat. Psychopharmacology, 1987, 91, 236-8.	3.1	24