
Jinjin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017197/publications.pdf Version: 2024-02-01

LINUN CHEN

#	Article	IF	CITATIONS
1	In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery. ACS Biomaterials Science and Engineering, 2022, 8, 722-733.	2.6	32
2	Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	156
3	Current Developments and Challenges of mRNA Vaccines. Annual Review of Biomedical Engineering, 2022, 24, 85-109.	5.7	39
4	Rational construction of polycystine-based nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7173-7182.	2.9	33
5	Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles. Journal of Controlled Release, 2021, 330, 1244-1249.	4.8	19
6	mRNA Delivery Using Bioreducible Lipidoid Nanoparticles Facilitates Neural Differentiation of Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2021, 10, e2000938.	3.9	23
7	Sequentially stimuli-responsive anticancer nanomedicines. Nanomedicine, 2021, 16, 261-264.	1.7	55
8	Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of <i>Angptl3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	192
9	In situ cancer vaccination using lipidoid nanoparticles. Science Advances, 2021, 7, .	4.7	49
10	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8, .	5.5	99
11	Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chinese Chemical Letters, 2020, 31, 1178-1182.	4.8	137
12	Imidazoleâ€Based Synthetic Lipidoids for Inâ€Vivo mRNA Delivery into Primary T Lymphocytes. Angewandte Chemie, 2020, 132, 20258-20264.	1.6	8
13	Imidazoleâ€Based Synthetic Lipidoids for Inâ€Vivo mRNA Delivery into Primary T Lymphocytes. Angewandte Chemie - International Edition, 2020, 59, 20083-20089.	7.2	74
14	Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Science Advances, 2020, 6, eabb4429.	4.7	89
15	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 2020, 20, 6191-6198.	4.5	75
16	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14957-14964.	7.2	44
17	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie, 2020, 132, 15067-15074.	1.6	15
18	Combinatorial Library of Cyclic Benzylidene Acetal-Containing pH-Responsive Lipidoid Nanoparticles for Intracellular mRNA Delivery. Bioconjugate Chemistry, 2020, 31, 1835-1843.	1.8	15

Jinjin Chen

#	Article	IF	CITATIONS
19	Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles InÂVitro and InÂVivo. Molecular Therapy - Nucleic Acids, 2020, 19, 1357-1367.	2.3	53
20	<i>In Vitro</i> and <i>In Vivo</i> Study of Amphotericin B Formulation with Quaternized Bioreducible Lipidoids. ACS Biomaterials Science and Engineering, 2020, 6, 1064-1073.	2.6	13
21	Combinatorial Library of Light-Cleavable Lipidoid Nanoparticles for Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 2391-2398.	2.6	11
22	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	6.2	317
23	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	4.1	117
24	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Advanced Science, 2018, 5, 1800004.	5.6	98
25	Advances in Stimuliâ€Responsive Polypeptide Nanogels. Small Methods, 2018, 2, 1700307.	4.6	48
26	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. ACS Biomaterials Science and Engineering, 2018, 4, 2026-2036.	2.6	65
27	Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing. Molecular Biotechnology, 2018, 60, 92-99.	1.3	6
28	Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers, 2018, 10, 611.	2.0	11
29	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 3487-3496.	4.0	90
30	Sequentially Responsive Shellâ€ s tacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	11.1	360
31	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	4.1	97
32	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017, 259, 136-148.	4.8	91
33	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, , 149-170.	0.5	1
34	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	4.5	127
35	PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli. PLoS ONE, 2016, 11, e0149762.	1.1	9
36	High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microbial Cell Factories, 2016, 15, 129.	1.9	46

JINJIN CHEN

#	Article	IF	CITATIONS
37	Enzymatically Synthesized Polyesters for Drug Delivery. , 2016, , 61-80.		Ο
38	Preliminary characterizations, antioxidant and hepatoprotective activity of polysaccharide from Cistanche deserticola. International Journal of Biological Macromolecules, 2016, 93, 678-685.	3.6	37
39	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	4.8	0
40	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	2.6	42
41	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855.	3.9	29
42	Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 283-290.	2.5	22
43	Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue. Carbohydrate Polymers, 2015, 132, 509-512.	5.1	54
44	Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydrate Polymers, 2015, 127, 176-181.	5.1	69
45	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	3.9	1
46	Correction: Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2015, 3, 1455-1456.	2.9	0
47	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	1.9	75
48	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & Interfaces, 2014, 6, 21202-21214.	4.0	77
49	Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth. Journal of Chromatography A, 2014, 1323, 66-72.	1.8	8
50	Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium) Tj ETQq0 0 0 rgE	BT /Qverloo	k 10 Tf 50 22

51Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy
efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.2.9141