
Jinjin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017197/publications.pdf Version: 2024-02-01

LINUN CHEN

#	Article	IF	CITATIONS
1	Sequentially Responsive Shell‣tacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	11.1	360
2	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	6.2	317
3	Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of <i>Angptl3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	192
4	Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	156
5	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.	2.9	141
6	Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chinese Chemical Letters, 2020, 31, 1178-1182.	4.8	137
7	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	4.5	127
8	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	4.1	117
9	Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium) Tj ETQq1 1 0.7843	314.fgBT/	Overlock 10
10	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8, .	5.5	99
11	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Advanced Science, 2018, 5, 1800004.	5.6	98
12	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	4.1	97
13	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017, 259, 136-148.	4.8	91
14	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 3487-3496.	4.0	90
15	Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Science Advances, 2020, 6, eabb4429.	4.7	89
16	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & Interfaces, 2014, 6, 21202-21214.	4.0	77
17	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	1.9	75
18	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 2020, 20, 6191-6198.	4.5	75

Jinjin Chen

#	Article	IF	CITATIONS
19	Imidazoleâ€Based Synthetic Lipidoids for Inâ€Vivo mRNA Delivery into Primary T Lymphocytes. Angewandte Chemie - International Edition, 2020, 59, 20083-20089.	7.2	74
20	Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydrate Polymers, 2015, 127, 176-181.	5.1	69
21	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. ACS Biomaterials Science and Engineering, 2018, 4, 2026-2036.	2.6	65
22	Sequentially stimuli-responsive anticancer nanomedicines. Nanomedicine, 2021, 16, 261-264.	1.7	55
23	Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue. Carbohydrate Polymers, 2015, 132, 509-512.	5.1	54
24	Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles InÂVitro and InÂVivo. Molecular Therapy - Nucleic Acids, 2020, 19, 1357-1367.	2.3	53
25	In situ cancer vaccination using lipidoid nanoparticles. Science Advances, 2021, 7, .	4.7	49
26	Advances in Stimuliâ€Responsive Polypeptide Nanogels. Small Methods, 2018, 2, 1700307.	4.6	48
27	High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microbial Cell Factories, 2016, 15, 129.	1.9	46
28	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14957-14964.	7.2	44
29	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	2.6	42
30	Current Developments and Challenges of mRNA Vaccines. Annual Review of Biomedical Engineering, 2022, 24, 85-109.	5.7	39
31	Preliminary characterizations, antioxidant and hepatoprotective activity of polysaccharide from Cistanche deserticola. International Journal of Biological Macromolecules, 2016, 93, 678-685.	3.6	37
32	Rational construction of polycystine-based nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7173-7182.	2.9	33
33	In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery. ACS Biomaterials Science and Engineering, 2022, 8, 722-733.	2.6	32
34	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855.	3.9	29
35	mRNA Delivery Using Bioreducible Lipidoid Nanoparticles Facilitates Neural Differentiation of Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2021, 10, e2000938.	3.9	23
36	Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 283-290.	2.5	22

Jinjin Chen

#	Article	IF	CITATIONS
37	Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles. Journal of Controlled Release, 2021, 330, 1244-1249.	4.8	19
38	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie, 2020, 132, 15067-15074.	1.6	15
39	Combinatorial Library of Cyclic Benzylidene Acetal-Containing pH-Responsive Lipidoid Nanoparticles for Intracellular mRNA Delivery. Bioconjugate Chemistry, 2020, 31, 1835-1843.	1.8	15
40	<i>In Vitro</i> and <i>In Vivo</i> Study of Amphotericin B Formulation with Quaternized Bioreducible Lipidoids. ACS Biomaterials Science and Engineering, 2020, 6, 1064-1073.	2.6	13
41	Synthetic Glycopolypeptide Micelle for Targeted Drug Delivery to Hepatic Carcinoma. Polymers, 2018, 10, 611.	2.0	11
42	Combinatorial Library of Light-Cleavable Lipidoid Nanoparticles for Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 2391-2398.	2.6	11
43	PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli. PLoS ONE, 2016, 11, e0149762.	1.1	9
44	Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth. Journal of Chromatography A, 2014, 1323, 66-72.	1.8	8
45	Imidazoleâ€Based Synthetic Lipidoids for Inâ€Vivo mRNA Delivery into Primary T Lymphocytes. Angewandte Chemie, 2020, 132, 20258-20264.	1.6	8
46	Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing. Molecular Biotechnology, 2018, 60, 92-99.	1.3	6
47	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	3.9	1
48	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, , 149-170.	0.5	1
49	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	4.8	0
50	Correction: Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2015, 3, 1455-1456.	2.9	0
51	Enzymatically Synthesized Polyesters for Drug Delivery. , 2016, , 61-80.		0