Sosaku Ichikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4016899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dewatering of microalgae suspensions by cake filtration with filter cloths. Journal of Applied Phycology, 2021, 33, 1977-1985.	2.8	5
2	Biocompatible homogeneous particle formation via the self-complexation of chitosan with oleic acid and its application as an encapsulation material for a water-insoluble compound. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126808.	4.7	7
3	Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences (Switzerland), 2021, 11, 10345.	2.5	14
4	Microalgae Oil Production Using Wastewater in Japan—Introducing Operational Cost Function for Sustainable Management of WWTP. Energies, 2020, 13, 5310.	3.1	3
5	Bench-scale dehydration of a native microalgae culture by centrifugation, flocculation and filtration in Minamisoma city, Fukushima, Japan. Bioresource Technology Reports, 2020, 10, 100414.	2.7	4
6	Reduction in Energy Requirement and CO2 Emission for Microalgae Oil Production Using Wastewater. Energies, 2020, 13, 1641.	3.1	12
7	Lipid Vesicle Preparation Using W/O/W Multiple Emulsions Via Solvent Evaporation: The Effect of Emulsifiers on the Entrapment Yield of Hydrophilic Materials. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1405-1416.	1.9	5
8	Preparation of Lipid Vesicles Using Double Emulsions. Oleoscience, 2019, 19, 197-201.	0.0	0
9	Effects of the Type of Pectin and Concentration of Citric Acid on Digestive Behavior of a Bubble-containing Gel: Evaluation Using a Human Gastric Digestion Simulator. Japan Journal of Food Engineering, 2019, 20, 53-60.	0.3	0
10	Formulation and Evaluation of a Satiety-inducing Carbonated Beverage that Forms a Bubble-containing Gel in the Stomach. Food Science and Technology Research, 2018, 24, 435-442.	0.6	5
11	<i>In vitro</i> Digestion of Oil-containing Hydrogels Using Gastric Digestion Simulator: a Model Analysis for Oil Release Control inside Human Stomach. Japan Journal of Food Engineering, 2018, 19, 89-101.	0.3	3
12	Visualization and Evaluation of Disintegration of Food Particles Using a Human Gastric Digestion Simulator. Journal of the Japanese Society for Food Science and Technology, 2018, 65, 543-551.	0.1	1
13	Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal, 2017, 122, 85-90.	3.6	23
14	Freeze-dryable lipid vesicles with size tunability and high encapsulation efficiency prepared by the multiple emulsification-solvent evaporation method. Colloids and Surfaces B: Biointerfaces, 2017, 159, 412-418.	5.0	9
15	Formulation of W/O/W emulsions loaded with short-chain fatty acid and their stability improvement by layer-by-layer deposition using dietary fibers. LWT - Food Science and Technology, 2017, 76, 344-350.	5.2	13
16	Development and Fundamental Characteristics of a Human Gastric Digestion Simulator for Analysis of Food Disintegration. Japan Agricultural Research Quarterly, 2017, 51, 17-25.	0.4	12
17	Efficient Encapsulation of a Waterâ€Soluble Molecule into Lipid Vesicles Using W/O/W Multiple Emulsions via Solvent Evaporation. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 421-430.	1.9	15
18	Microchannel Emulsification and Improvement of the Stability of Food-Grade Monodisperse Emulsion Droplets through Layer-by-layer Deposition. Japan Journal of Food Engineering, 2015, 16, 89-96.	0.3	3

Sosaku Ichikawa

#	Article	IF	CITATIONS
19	Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation. Advances in Colloid and Interface Science, 2015, 226, 86-100.	14.7	19
20	Development of a Human Gastric Digestion Simulator Equipped with Peristalsis Function for the Direct Observation and Analysis of the Food Digestion Process. Food Science and Technology Research, 2014, 20, 225-233.	0.6	59
21	PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator. Food and Function, 2014, 5, 1839-1847.	4.6	21
22	Preparation of Monodisperse Food-Grade Oleuropein-Loaded W/O/W Emulsions Using Microchannel Emulsification and Evaluation of Their Storage Stability. Food and Bioprocess Technology, 2014, 7, 2014-2027.	4.7	42
23	Stability control of large oil droplets by layer-by-layer deposition using polyelectrolyte dietary fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 2-9.	4.7	15
24	Microcompartmentalized cell-free protein synthesis in semipermeable microcapsules composed of polyethylenimine-coated alginate. Journal of Bioscience and Bioengineering, 2014, 118, 199-204.	2.2	8
25	Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews, 2013, 65, 1626-1663.	13.7	250
26	Efficient Preparation of Giant Vesicles as Biomimetic Compartment Systems with High Entrapment Yields for Biomacromolecules. Chemistry and Biodiversity, 2012, 9, 2453-2472.	2.1	17
27	Analysis of Flow Phenomena in Gastric Contents Induced by Human Gastric Peristalsis Using CFD. Food Biophysics, 2010, 5, 330-336.	3.0	68
28	Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab on A Chip, 2010, 10, 2292.	6.0	17
29	Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluidics and Nanofluidics, 2009, 6, 811-821.	2.2	29
30	Biocompatible Nano/Micro-Dispersion Systems Prepared via the Self Assembly of Food Materials. Japan Journal of Food Engineering, 2009, 10, 207-213.	0.3	3
31	Novel Method for Obtaining Homogeneous Giant Vesicles from a Monodisperse Water-in-Oil Emulsion Prepared with a Microfluidic Device. Langmuir, 2008, 24, 4581-4588.	3.5	115
32	Preparation of Giant Vesicles Larger than 30 μm That Entrap a Model Hydrophilic Substance Using a Size-controlled Water-in-Oil Emulsion. Membrane, 2007, 32, 229-233.	0.0	9
33	Entrapment of some compounds into biocompatible nano-sized particles and their releasing properties. Colloids and Surfaces B: Biointerfaces, 2005, 42, 141-146.	5.0	33
34	Formation of Biocompatible Nanoparticles by Self-Assembly of Enzymatic Hydrolysates of Chitosan and Carboxymethyl Cellulose. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1637-1642.	1.3	61
35	Factors Affecting the Composition of Oligosaccharides Produced in Chitosan Hydrolysis Using Immobilized Chitosanases. Biotechnology Progress, 2002, 18, 969-974.	2.6	47
36	Enzymes inside lipid vesicles: preparation, reactivity and applications. New Biotechnology, 2001, 18, 143-177.	2.7	599

#	Article	IF	CITATIONS
37	Formation and Characterization of Reversed Micelles Composed of Phospholipids and Fatty Acids. Journal of Colloid and Interface Science, 2001, 240, 566-572.	9.4	15
38	Formation of biocompatible reversed micellar systems using phospholipids. Biochemical Engineering Journal, 2000, 6, 193-199.	3.6	27