Daniel Sharon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4016546/publications.pdf Version: 2024-02-01

DANIEL SHADON

#	Article	IF	CITATIONS
1	Increasing Ionic Conductivity of Poly(ethylene oxide) by Reaction with Metallic Li. Advanced Energy and Sustainability Research, 2022, 3, 2100142.	5.8	15
2	Development of Electroactive and Stable Current Collectors for Aqueous Batteries. Journal of the Electrochemical Society, 2022, 169, 050516.	2.9	0
3	Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions. ACS Applied Materials & Interfaces, 2022, 14, 30952-30961.	8.0	6
4	Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes. Journal of Materials Chemistry A, 2021, 9, 9937-9951.	10.3	21
5	Molecular Level Differences in Ionic Solvation and Transport Behavior in Ethylene Oxide-Based Homopolymer and Block Copolymer Electrolytes. Journal of the American Chemical Society, 2021, 143, 3180-3190.	13.7	55
6	Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes. Macromolecules, 2021, 54, 2266-2276.	4.8	33
7	Critical Review on the Unique Interactions and Electroanalytical Challenges Related to Cathodes ― Solutions Interfaces in Nonâ€Aqueous Mg Battery Prototypes. ChemElectroChem, 2021, 8, 3229-3238.	3.4	2
8	Tailoring Nickel-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Layered Oxide Cathode Materials with Metal Sulfides (M ₂ S:M = Li, Na) for Improved Electrochemical Properties. Journal of the Electrochemical Society, 2021, 168, 080543.	2.9	4
9	AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries. ChemSusChem, 2021, 14, 4690-4696.	6.8	24
10	Improvement of the Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ via Atomic Layer Deposition of Lithium-Rich Zirconium Phosphate Coatings. ACS Applied Materials & Interfaces, 2021, 13, 61733-61741.	8.0	11
11	Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes. ACS Energy Letters, 2020, 5, 2889-2896.	17.4	13
12	Intrinsic Ion Transport Properties of Block Copolymer Electrolytes. ACS Nano, 2020, 14, 8902-8914.	14.6	36
13	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	47.7	593
14	Electrolyte Solutions for "Beyond Li-Ion Batteries― Li-S, Li-O ₂ , and Mg Batteries. Electrochemical Society Interface, 2019, 28, 71-77.	0.4	2
15	Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 597-608.	3.4	16
16	Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV–Vis Spectroscopy. ACS Applied Materials & Interfaces, 2018, 10, 10860-10869.	8.0	6
17	Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes. Journal of the Electrochemical Society, 2018, 165, H1028-H1039.	2.9	35
18	The importance of solvent selection in Li–O ₂ cells. Chemical Communications, 2017, 53, 3269-3272.	4.1	26

DANIEL SHARON

#	Article	IF	CITATIONS
19	Aprotic metal-oxygen batteries: recent findings and insights. Journal of Solid State Electrochemistry, 2017, 21, 1861-1878.	2.5	23
20	2,4-Dimethoxy-2,4-dimethylpentan-3-one: An Aprotic Solvent Designed for Stability in Li–O2 Cells. Journal of the American Chemical Society, 2017, 139, 11690-11693.	13.7	34
21	Feasibility of Full (Li-Ion)–O ₂ Cells Comprised of Hard Carbon Anodes. ACS Applied Materials & Interfaces, 2017, 9, 4352-4361.	8.0	31
22	Li–O ₂ cells with LiBr as an electrolyte and a redox mediator. Energy and Environmental Science, 2016, 9, 2334-2345.	30.8	229
23	Mechanistic Role of Li ⁺ Dissociation Level in Aprotic Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2016, 8, 5300-5307.	8.0	120
24	LithiumOxygen Electrochemistry in Nonâ€Aqueous Solutions. Israel Journal of Chemistry, 2015, 55, 508-520.	2.3	44
25	Understanding the behavior of Li–oxygen cells containing Lil. Journal of Materials Chemistry A, 2015, 3, 8855-8864.	10.3	187
26	Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions. Journal of the Electrochemical Society, 2015, 162, A2424-A2438.	2.9	137
27	Catalytic Behavior of Lithium Nitrate in Li-O ₂ Cells. ACS Applied Materials & Interfaces, 2015, 7, 16590-16600.	8.0	127
28	Reactivity of Amide Based Solutions in Lithium–Oxygen Cells. Journal of Physical Chemistry C, 2014, 118, 15207-15213.	3.1	50
29	Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen. Journal of Physical Chemistry Letters, 2013, 4, 3115-3119.	4.6	229
30	Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 5021.	10.3	54
31	On the Challenge of Electrolyte Solutions for Li–Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. Journal of Physical Chemistry Letters, 2013, 4, 127-131.	4.6	139