Eita Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4016345/publications.pdf

Version: 2024-02-01

		1307366	1372474	
14	115	7	10	
papers	citations	h-index	g-index	
14	14	14	156	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathogens, 2021, 17, e1009890.	2.1	9
2	Impact of injection buffer volume to perform bronchoalveolar lavage fluid collection for isolating alveolar macrophages to investigate fine particle-induced IL-1 \hat{l} ± secretion. Journal of Immunotoxicology, 2021, 18, 163-172.	0.9	2
3	Immunogenicity and Toxicity of Different Adjuvants Can Be Characterized by Profiling Lung Biomarker Genes After Nasal Immunization. Frontiers in Immunology, 2020, 11, 2171.	2.2	15
4	Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1051-1061.	1.5	4
5	Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Scientific Reports, 2019, 9, 16249.	1.6	5
6	In vitro marker gene expression analyses in human peripheral blood mononuclear cells: A tool to assess safety of influenza vaccines in humans. Journal of Immunotoxicology, 2018, 15, 53-62.	0.9	10
7	Genomic Approaches Enable Evaluation of the Safety and Quality of Influenza Vaccines and Adjuvants. , 2018, , .		O
8	Gene expression profiling toward the next generation safety control of influenza vaccines and adjuvants in Japan. Vaccine, 2018, 36, 6449-6455.	1.7	2
9	Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine, 2018, 36, 7112-7118.	1.7	10
10	Development of screening method for intranasal influenza vaccine and adjuvant safety in preclinical study. Biologicals, 2018, 55, 43-52.	0.5	8
11	Development of a preclinical humanized mouse model to evaluate acute toxicity of an influenza vaccine. Oncotarget, 2018, 9, 25751-25763.	0.8	10
12	Modeling for influenza vaccines and adjuvants profile for safety prediction system using gene expression profiling and statistical tools. PLoS ONE, 2018, 13, e0191896.	1.1	17
13	A novel vaccinological evaluation of intranasal vaccine and adjuvant safety for preclinical tests. Vaccine, 2017, 35, 821-830.	1.7	16
14	Evaluation of marker gene expression as a potential predictive marker of leukopenic toxicity for inactivated influenza vaccines. Biologicals, 2017, 50, 100-108.	0.5	7