
Li Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4016070/publications.pdf Version: 2024-02-01

Ιι Ζμου

#	Article	IF	CITATIONS
1	Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 2021, 12, 1993.	12.8	128
2	Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials, 2018, 181, 113-125.	11.4	97
3	Temporal and spatial distribution characteristics and source origins of volatile organic compounds in a megacity of Sichuan Basin, China. Environmental Research, 2020, 185, 109478.	7.5	34
4	Component characteristics and source apportionment of volatile organic compounds during summer and winter in downtown Chengdu, southwest China. Atmospheric Environment, 2021, 258, 118485.	4.1	34
5	The Optical Properties of Limonene Secondary Organic Aerosols: The Role of NO 3 , OH, and O 3 in the Oxidation Processes. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3292-3303.	3.3	25
6	Temperature Dependence of Heterogeneous Uptake of Hydrogen Peroxide on Silicon Dioxide and Calcium Carbonate. Journal of Physical Chemistry A, 2012, 116, 7959-7964.	2.5	22
7	Kinetics of the Reactions of NO3 Radical with Methacrylate Esters. Journal of Physical Chemistry A, 2017, 121, 4464-4474.	2.5	22
8	Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates. Chemosphere, 2021, 272, 129952.	8.2	21
9	Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust. Journal of Environmental Sciences, 2014, 26, 2423-2433.	6.1	20
10	Kinetics and mechanisms of the gas-phase reactions of OH radicals with three C15 alkanes. Atmospheric Environment, 2019, 207, 75-81.	4.1	19
11	High-density gold nanoparticles on multi-walled carbon nanotube films: a sensitive electrochemical nonenzymatic platform of glucose. Journal of Experimental Nanoscience, 2012, 7, 263-273.	2.4	18
12	Effects of SO ₂ on optical properties of secondary organic aerosol generated from photooxidation of toluene under different relative humidity conditions. Atmospheric Chemistry and Physics, 2020, 20, 4477-4492.	4.9	18
13	Heterogeneous uptake of nitrogen dioxide on Chinese mineral dust. Journal of Environmental Sciences, 2015, 38, 110-118.	6.1	16
14	Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. Chemosphere, 2022, 302, 134864.	8.2	16
15	Important Oxidants and Their Impact on the Environmental Effects of Aerosols. Journal of Physical Chemistry A, 2021, 125, 3813-3825.	2.5	15
16	Temperature effects on optical properties and chemical composition of secondary organic aerosol derived from <i>n</i> -dodecane. Atmospheric Chemistry and Physics, 2020, 20, 8123-8137.	4.9	14
17	Photoswitchable Fluorescent Crystals Obtained by the Photoreversible Coassembly of a Nucleobase and an Azobenzene Intercalator. Journal of the American Chemical Society, 2019, 141, 9321-9329.	13.7	12
18	Kinetics of the reactions of NO3 radical with alkanes. Physical Chemistry Chemical Physics, 2019, 21, 4246-4257.	2.8	12

Lı Zнои

#	Article	IF	CITATIONS
19	Characteristics of ambient volatile organic compounds during spring O3 pollution episode in Chengdu, China. Journal of Environmental Sciences, 2022, 114, 115-125.	6.1	12
20	Heterogeneous uptake of gaseous hydrogen peroxide on mineral dust. Journal of Environmental Sciences, 2016, 40, 44-50.	6.1	11
21	Intramolecularly Protein-Crosslinked DNA Gels: New Biohybrid Nanomaterials with Controllable Size and Catalytic Activity. Small, 2017, 13, 1700706.	10.0	11
22	Biogenic volatile organic compound emission patterns and secondary pollutant formation potentials of dominant greening trees in Chengdu, southwest China. Journal of Environmental Sciences, 2022, 114, 179-193.	6.1	10
23	Observation-Based Summer O3 Control Effect Evaluation: A Case Study in Chengdu, a Megacity in Sichuan Basin, China. Atmosphere, 2020, 11, 1278.	2.3	9
24	Effect of chemical structure on optical properties of secondary organic aerosols derived from C12 alkanes. Science of the Total Environment, 2021, 751, 141620.	8.0	9
25	Progressively narrow the gap of PM2.5 pollution characteristics at urban and suburban sites in a megacity of Sichuan Basin, China. Journal of Environmental Sciences, 2023, 126, 708-721.	6.1	9
26	Atmospheric loss of nitrous oxide (N ₂ O) is not influenced by its potential reactions with OH and NO ₃ radicals. Physical Chemistry Chemical Physics, 2019, 21, 24592-24600.	2.8	4
27	Chemical composition of different size ultrafine particulate matter measured by nanoparticle chemical ionization mass spectrometer. Journal of Environmental Sciences, 2022, 114, 434-443.	6.1	4
28	Real-World Vehicle Volatile Organic Compound Emissions and Their Source Profile in Chengdu Based on a Roadside and Tunnel Study. Atmosphere, 2021, 12, 861.	2.3	2