
Ilya Terenin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4016006/publications.pdf Version: 2024-02-01

ILVA TEDENIN

#	Article	IF	CITATIONS
1	Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Research, 2022, 50, 1111-1127.	14.5	21
2	Clinically observed deletions in SARSâ€CoVâ€2 Nsp1 affect its stability and ability to inhibit translation. FEBS Letters, 2022, 596, 1203-1213.	2.8	3
3	Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Biochemistry (Moscow), 2021, 86, 1060-1094.	1.5	22
4	Discovery of a novel role of tumor suppressor PDCD4 in stimulation of translation termination. Journal of Biological Chemistry, 2021, 297, 101269.	3.4	4
5	Functional Cyclization of Eukaryotic mRNAs. International Journal of Molecular Sciences, 2020, 21, 1677.	4.1	31
6	Polyadenylate-binding protein–interacting proteins PAIP1 and PAIP2 affect translation termination. Journal of Biological Chemistry, 2019, 294, 8630-8639.	3.4	25
7	eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. Rna, 2019, 25, 757-767.	3.5	14
8	Translatome and transcriptome analysis of TMA20 (MCT-1) and TMA64 (eIF2D) knockout yeast strains. Data in Brief, 2019, 23, 103701.	1.0	14
9	A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie, 2019, 157, 92-101.	2.6	12
10	Translation control of mRNAs encoding mammalian translation initiation factors. Gene, 2018, 651, 174-182.	2.2	16
11	Cap-Independent Translation: What's in a Name?. Trends in Biochemical Sciences, 2018, 43, 882-895.	7.5	77
12	A researcher's guide to the galaxy of IRESs. Cellular and Molecular Life Sciences, 2017, 74, 1431-1455.	5.4	68
13	Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Scientific Reports, 2016, 6, 37905.	3.3	40
14	Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene, 2016, 578, 1-6.	2.2	20
15	Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in elF2-bound GTP hydrolysis. Nucleic Acids Research, 2016, 44, 1882-1893.	14.5	31
16	Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site?. Biochimie, 2016, 121, 228-237.	2.6	18
17	Translation of 5′ leaders is pervasive in genes resistant to elF2 repression. ELife, 2015, 4, e03971.	6.0	294
18	A technique to increase protein yield in a rabbit reticulocyte lysate translation system. BioTechniques, 2014, 56, 36-39.	1.8	28

Ilya Terenin

#	Article	IF	CITATIONS
19	Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 164-177.	5.2	52
20	A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Research, 2013, 41, 1807-1816.	14.5	57
21	The 5′ untranslated region of Apafâ€1 mRNA directs translation under apoptosis conditions via a 5′ endâ€dependent scanning mechanism. FEBS Letters, 2012, 586, 4139-4143.	2.8	25
22	Cap- and IRES-Independent Scanning Mechanism of Translation Initiation as an Alternative to the Concept of Cellular IRESs. Molecules and Cells, 2010, 30, 285-294.	2.6	103
23	GTP-independent tRNA Delivery to the Ribosomal P-site by a Novel Eukaryotic Translation Factor. Journal of Biological Chemistry, 2010, 285, 26779-26787.	3.4	144
24	Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Research, 2009, 37, 6135-6147.	14.5	79
25	Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nature Structural and Molecular Biology, 2008, 15, 836-841.	8.2	163
26	Eukaryotic translation initiation machinery can operate in a prokaryotic-like mode without eIF2. Nature Precedings, 2008, , .	0.1	0
27	Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated. Molecular and Cellular Biology, 2007, 27, 4685-4697.	2.3	111
28	A Leaderless mRNA Can Bind to Mammalian 80S Ribosomes and Direct Polypeptide Synthesis in the Absence of Translation Initiation Factors. Molecular and Cellular Biology, 2006, 26, 3164-3169.	2.3	60
29	A Cross-Kingdom Internal Ribosome Entry Site Reveals a Simplified Mode of Internal Ribosome Entry. Molecular and Cellular Biology, 2005, 25, 7879-7888.	2.3	75
30	Pyrimidine tract binding protein strongly stimulates in vitro encephalomyocarditis virus RNA translation at the level of preinitiation complex formation. FEBS Letters, 1994, 351, 299-302.	2.8	63