
Jirun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimally-invasive dentistry via dual-function novel bioactive low-shrinkage-stress flowable nanocomposites. Dental Materials, 2022, 38, 409-420.	3.5	4
2	Low-Shrinkage Resin Matrices in Restorative Dentistry-Narrative Review. Materials, 2022, 15, 2951.	2.9	9
3	Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 886-905.	3.5	7
4	Novel Nano Calcium Fluoride Remineralizing and Antibacterial Dental Composites. Journal of Dentistry, 2021, 113, 103789.	4.1	18
5	High-Performance Dental Adhesives Containing an Ether-Based Monomer. Journal of Dental Research, 2020, 99, 189-195.	5.2	13
6	Bioactive low-shrinkage-stress nanocomposite suppresses S. mutans biofilm and preserves tooth dentin hardness. Acta Biomaterialia, 2020, 114, 146-157.	8.3	32
7	Novel pit and fissure sealant containing nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dental Materials, 2020, 36, 1241-1253.	3.5	37
8	Novel root canal sealer with dimethylaminohexadecyl methacrylate, nano-silver and nano-calcium phosphate to kill bacteria inside root dentin and increase dentin hardness. Dental Materials, 2019, 35, 1479-1489.	3.5	40
9	Stoichiometry and Kinetics of Sequential Dimethacrylate Enzymolysis. Journal of Dental Research, 2019, 98, 1037-1044.	5.2	2
10	Novel endodontic sealer with dual strategies of dimethylaminohexadecyl methacrylate and nanoparticles of silver to inhibit root canal biofilms. Dental Materials, 2019, 35, 1117-1129.	3.5	27
11	Self-healing adhesive with antibacterial activity in water-aging for 12 months. Dental Materials, 2019, 35, 1104-1116.	3.5	26
12	A thick frame decreases the fracture toughness of veneering ceramics used for zirconia-based all-ceramic restorations. Journal of Prosthodontic Research, 2019, 63, 184-192.	2.8	4
13	Miniature specimens for fracture toughness evaluation of dental resin composites. Dental Materials, 2019, 35, 283-291.	3.5	8
14	Novel rechargeable calcium phosphate nanoparticle-filled dental cement. Dental Materials Journal, 2019, 38, 1-10.	1.8	10
15	pH-Sensitive Compounds for Selective Inhibition of Acid-Producing Bacteria. ACS Applied Materials & Interfaces, 2018, 10, 8566-8573.	8.0	31
16	High performance dental resin composites with hydrolytically stable monomers. Dental Materials, 2018, 34, 228-237.	3.5	67
17	Protein-repellent nanocomposite with rechargeable calcium and phosphate for long-term ion release. Dental Materials, 2018, 34, 1735-1747.	3.5	27
18	Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Research, 2018, 6, 31.	11.4	206

Jirun Sun

#	Article	IF	CITATIONS
19	Durability of self-healing dental composites: A comparison of performance under monotonic and cyclic loading. Materials Science and Engineering C, 2018, 93, 1020-1026.	7.3	21
20	Short-time dental resin biostability and kinetics of enzymatic degradation. Acta Biomaterialia, 2018, 74, 326-333.	8.3	9
21	Stoichiometric analysis of competing intermolecular hydrogen bonds using infrared spectroscopy. RSC Advances, 2018, 8, 23481-23488.	3.6	43
22	Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomaterialia, 2017, 53, 585-597.	8.3	40
23	Experimental and statistical methods to evaluate antibacterial activity of a quaternary pyridinium salt on planktonic, biofilm-forming, and biofilm states. Biofouling, 2017, 33, 222-234.	2.2	5
24	Clinically Applicable Self-Healing Dental Resin Composites. MRS Advances, 2016, 1, 547-552.	0.9	8
25	A composition-controlled cross-linking resin network through rapid visible-light photo-copolymerization. Polymer Chemistry, 2016, 7, 5023-5030.	3.9	15
26	Design and development of self-healing dental composites. Materials and Design, 2016, 94, 295-302.	7.0	67
27	Tuning photo-catalytic activities of TiO2 nanoparticles using dimethacrylate resins. Dental Materials, 2016, 32, 363-372.	3.5	20
28	Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click―Reaction. ACS Applied Materials & Interfaces, 2016, 8, 792-801.	8.0	14
29	Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomaterialia, 2015, 18, 236-248.	8.3	116
30	Preparation of Dental Resins Resistant to Enzymatic and Hydrolytic Degradation in Oral Environments. Biomacromolecules, 2015, 16, 3381-3388.	5.4	67
31	Effect of EDTA Preparations on Rotary Root Canal Instrumentation. Journal of Endodontics, 2015, 41, 92-96.	3.1	4
32	Improving performance of dental resins by adding titanium dioxide nanoparticles. Dental Materials, 2011, 27, 972-982.	3.5	96
33	Thermodynamic Underpinnings of Cell Alignment on Controlled Topographies. Advanced Materials, 2011, 23, 421-425.	21.0	36
34	Exploring Cellular Contact Guidance Using Gradient Nanogratings. Biomacromolecules, 2010, 11, 3067-3072.	5.4	36
35	3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dental Materials, 2009, 25, 314-320.	3.5	91
36	Evaluation of dental composite shrinkage and leakage in extracted teeth using X-ray microcomputed tomography. Dental Materials, 2009, 25, 1213-1220.	3.5	60

Jirun Sun

#	Article	IF	CITATIONS
37	Nondestructive quantification of leakage at the tooth–composite interface and its correlation with material performance parameters. Biomaterials, 2009, 30, 4457-4462.	11.4	38
38	X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental compositesa~†. Dental Materials, 2008, 24, 228-234.	3.5	77
39	Surface Properties of a Series of Amphiphilic Dendrimers with Short Hydrophobic Chains. Langmuir, 2008, 24, 1858-1862.	3.5	10
40	Diffusion of Dextran Probes in a Self-Assembled Fibrous Gel Composed of Two-Dimensional Arborols. Journal of Physical Chemistry B, 2008, 112, 29-35.	2.6	13
41	Some Structural Observations of Self-Assembled, Fibrillar Gels Composed of Two-Directional Bolaform Arborols. ACS Symposium Series, 2006, , 370-383.	0.5	3