Junya Mizoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015883/publications.pdf

Version: 2024-02-01

134610 340414 7,170 43 34 39 h-index citations g-index papers 43 43 43 9183 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
2	Cytosolic <scp>HSC70s</scp> repress heat stress tolerance and enhance seed germination under salt stress conditions. Plant, Cell and Environment, 2021, 44, 1788-1801.	2.8	16
3	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	3.3	77
4	Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal of Biological Chemistry, 2019, 294, 902-917.	1.6	62
5	A geneâ€stacking approach to overcome the tradeâ€off between drought stress tolerance and growth in Arabidopsis. Plant Journal, 2019, 97, 240-256.	2.8	63
6	Application of Biotechnology to Generate Drought-Tolerant Soybean Plants in Brazil: Development of Genetic Engineering Technology of Crops with Stress Tolerance Against Degradation of Global Environment., 2018,, 111-130.		5
7	ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants, 2017, 3, 16204.	4.7	97
8	Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 2017, 90, 61-78.	2.8	173
9	BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8528-E8536.	3.3	82
10	Double overexpression of <scp>DREB</scp> and <scp>PIF</scp> transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal, 2017, 15, 458-471.	4.1	145
11	Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions. Frontiers in Plant Science, 2017, 8, 448.	1.7	59
12	<i>AtDREB2A-CA</i> Influences Root Architecture and Increases Drought Tolerance in Transgenic Cotton. Agricultural Sciences, 2017, 08, 1195-1225.	0.2	7
13	The <i><scp>A</scp>rabidopsis</i> transcriptional regulator <scp>DPB</scp> 3â€1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 2016, 14, 1756-1767.	4.1	55
14	The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression. Plant Cell, 2016, 28, 181-201.	3.1	152
15	Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg ²⁺ Concentrations in Arabidopsis. Plant Physiology, 2015, 167, 1039-1057.	2.3	51
16	Soybean <scp>DREB</scp> 1/ <scp>CBF</scp> â€type transcription factors function in heat and drought as well as cold stressâ€responsive gene expression. Plant Journal, 2015, 81, 505-518.	2.8	255
17	<i>Arabidopsis</i> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.	3.1	143
18	Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Science, 2014, 221-222, 59-68.	1.7	91

#	Article	IF	Citations
19	Drought Stress Signaling Network. , 2014, , 383-409.		23
20	Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 450, 396-400.	1.0	19
21	Mitochondrial Phosphatidylethanolamine Level Modulates Cyt c Oxidase Activity to Maintain Respiration Capacity in Arabidopsis thaliana Rosette Leaves. Plant and Cell Physiology, 2013, 54, 1612-1619.	1.5	19
22	Stress Signaling Networks: Drought Stress. , 2013, , 1-23.		3
23	Molecular Approaches to Improve Rice Abiotic Stress Tolerance. Methods in Molecular Biology, 2013, 956, 269-283.	0.4	24
24	Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genetics and Molecular Biology, 2013, 36, 556-565.	0.6	34
25	Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 2013, 8, e80457.	1.1	52
26	GmDREB2A;2, a Canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-Type Transcription Factor in Soybean, Is Posttranslationally Regulated and Mediates Dehydration-Responsive Element-Dependent Gene Expression Â. Plant Physiology, 2012, 161, 346-361.	2.3	149
27	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	1.5	241
28	<i>Arabidopsis</i> GROWTH-REGULATING FACTOR7 Functions as a Transcriptional Repressor of Abscisic Acid– and Osmotic Stress–Responsive Genes, Including <i>DREB2A</i> Plant Cell, 2012, 24, 3393-3405.	3.1	184
29	AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 86-96.	0.9	1,087
30	NAC transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 97-103.	0.9	779
31	Abiotic stressâ€inducible receptorâ€like kinases negatively control ABA signaling in Arabidopsis. Plant Journal, 2012, 70, 599-613.	2.8	168
32	<i>PHOSPHATIDYLSERINE SYNTHASE1</i> is required for microspore development in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 648-661.	2.8	81
33	Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011, 286, 321-332.	1.0	377
34	<i>SPINDLY</i> , a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response Â. Plant Physiology, 2011, 157, 1900-1913.	2.3	93
35	An ABRE Promoter Sequence is Involved in Osmotic Stress-Responsive Expression of the DREB2A Gene, Which Encodes a Transcription Factor Regulating Drought-Inducible Genes in Arabidopsis. Plant and Cell Physiology, 2011, 52, 2136-2146.	1.5	263
36	Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283, 185-196.	1.0	362

#	Article	IF	CITATIONS
37	AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 2010, 61, 672-685.	2.8	871
38	Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides. Journal of Biological Chemistry, 2010, 285, 1138-1146.	1.6	151
39	The Phytochrome-Interacting Factor PIF7 Negatively Regulates <i>DREB1</i> Expression under Circadian Control in Arabidopsis. Plant Physiology, 2009, 151, 2046-2057.	2.3	181
40	Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications, 2008, 368, 515-521.	1.0	209
41	Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE Affect Embryonic and Postembryonic Development in Arabidopsis. Plant Cell, 2007, 18, 3370-3385.	3.1	75
42	Chloroplast Transformation with Modified accD Operon Increases Acetyl-CoA Carboxylase and Causes Extension of Leaf Longevity and Increase in Seed Yield in Tobacco. Plant and Cell Physiology, 2002, 43, 1518-1525.	1.5	126
43	Overexpression of full-length and partial DREB2A enhances soybean drought tolerance. Agronomy Science and Biotechnology, 0, 8, 1-21.	0.3	5