
Anna M Stewart-Ibarra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015734/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados. BMJ Global Health, 2022, 7, e007842.	2.0	1
2	Chronic kidney disease in Ecuador: An epidemiological and health system analysis of an emerging public health crisis. PLoS ONE, 2022, 17, e0265395.	1.1	3
3	Climate change and infectious diseases: Research and policy actions needed to address an inequitable health crisis. One Earth, 2022, 5, 333-335.	3.6	2
4	The 2018–2019 weak El Niño: Predicting the risk of a dengue outbreak in Machala, Ecuador. International Journal of Climatology, 2021, 41, 3813-3823.	1.5	9
5	Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications, 2021, 12, 1233.	5.8	49
6	Exploring the utility of social-ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009257.	1.3	7
7	Climate services for health: From global observations to local interventions. Med, 2021, 2, 355-361.	2.2	3
8	Social Stressors, Arboviral Infection, and Immune Dysregulation in the Coastal Lowland Region of Ecuador: A Mixed Methods Approach in Ecological Perspective. American Journal of Tropical Medicine and Hygiene, 2021, 105, 756-765.	0.6	2
9	Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009931.	1.3	7
10	Micronutrients, Immunological Parameters, and Dengue Virus Infection in Coastal Ecuador: A Nested Case-Control Study in an Infectious Disease Surveillance Program. Journal of Infectious Diseases, 2020, 221, 91-101.	1.9	8
11	A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in CÃ ³ rdoba, Argentina. Heliyon, 2020, 6, e04858.	1.4	8
12	Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action. Epidemics, 2020, 33, 100400.	1.5	10
13	The COVID-19 pandemic should not derail global vector control efforts. PLoS Neglected Tropical Diseases, 2020, 14, e0008606.	1.3	17
14	The Relative Role of Climate Variation and Control Interventions on Malaria Elimination Efforts in El Oro, Ecuador: A Modeling Study. Frontiers in Environmental Science, 2020, 8, .	1.5	9
15	Climate change and viral emergence: evidence from Aedes-borne arboviruses. Current Opinion in Virology, 2020, 40, 41-47.	2.6	55
16	Key Findings and Comparisons From Analogous Case-Cluster Studies for Dengue Virus Infection Conducted in Machala, Ecuador, and Kamphaeng Phet, Thailand. Frontiers in Public Health, 2020, 8, 2.	1.3	2
17	A comparison of passive surveillance and active cluster-based surveillance for dengue fever in southern coastal Ecuador. BMC Public Health, 2020, 20, 1065.	1.2	10
18	The origins of dengue and chikungunya viruses in Ecuador following increased migration from Venezuela and Colombia. BMC Evolutionary Biology, 2020, 20, 31.	3.2	15

#	Article	IF	CITATIONS
19	A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. International Journal of Health Geographics, 2020, 19, 3.	1.2	5
20	Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control. Parasites and Vectors, 2020, 13, 78.	1.0	16
21	Building resilience to mosquito-borne diseases in the Caribbean. PLoS Biology, 2020, 18, e3000791.	2.6	12
22	Spatiotemporal Tools for Emerging and Endemic Disease Hotspots in Small Areas: An Analysis of Dengue and Chikungunya in Barbados, 2013–2016. American Journal of Tropical Medicine and Hygiene, 2020, 103, 149-156.	0.6	14
23	Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Neglected Tropical Diseases, 2019, 13, e0007772.	1.3	20
24	A participatory community case study of periurban coastal flood vulnerability in southern Ecuador. PLoS ONE, 2019, 14, e0224171.	1.1	21
25	Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS Neglected Tropical Diseases, 2019, 13, e0007448.	1.3	21
26	Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Neglected Tropical Diseases, 2019, 13, e0007322.	1.3	38
27	Effects of Political Instability in Venezuela on Malaria Resurgence at Ecuador–Peru Border, 2018. Emerging Infectious Diseases, 2019, 25, 834-836.	2.0	47
28	Sensitivity of large dengue epidemics in Ecuador to long-lead predictions of El Niño. Climate Services, 2019, 15, 100096.	1.0	7
29	Socio-Ecological Factors Associated with Dengue Risk and Aedes aegypti Presence in the Galápagos Islands, Ecuador. International Journal of Environmental Research and Public Health, 2019, 16, 682.	1.2	26
30	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	3.3	136
31	Arbovirus emergence in the temperate city of Córdoba, Argentina, 2009–2018. Scientific Data, 2019, 6, 276.	2.4	25
32	Detection of Antibodies to Spotted Fever Group Rickettsiae and Arboviral Coinfections in Febrile Individuals in 2014–2015 in Southern Coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1087-1090.	0.6	2
33	Phenomenological forecasting of disease incidence using heteroskedastic Gaussian processes: A dengue case study. Annals of Applied Statistics, 2018, 12, .	0.5	29
34	Zika virus infections and psychological distress following natural disasters. Future Virology, 2018, 13, 379-383.	0.9	3
35	The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012. International Journal of Environmental Research and Public Health, 2018, 15, 827.	1.2	46
36	Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine, 2018, 15, e1002613.	3.9	135

#	Article	IF	CITATIONS
37	Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador. International Journal of Environmental Research and Public Health, 2018, 15, 486.	1.2	3
38	The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1444-1459.	0.6	41
39	Case Report: An Acute Chikungunya Infection and a Recent Secondary Dengue Infection in a Peripartum Case in Ecuador. American Journal of Tropical Medicine and Hygiene, 2018, 98, 838-840.	0.6	5
40	Zika Virus Outbreak, Barbados, 2015–2016. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1857-1859.	0.6	9
41	Chagas Disease in Southern Coastal Ecuador: Coinfections with Arboviruses and a Comparison of Serological Assays for Chagas Disease Diagnosis. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1530-1533.	0.6	5
42	Climate Variability, Vulnerability, and Natural Disasters: A Case Study of Zika Virus in Manabi, Ecuador Following the 2016 Earthquake. GeoHealth, 2017, 1, 298-304.	1.9	24
43	Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planetary Health, The, 2017, 1, e142-e151.	5.1	97
44	Abortion, an increasing public health concern in Ecuador, a 10-year population-based analysis. Journal of Pragmatic and Observational Research, 2017, Volume 8, 129-135.	1.1	7
45	Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador. International Journal of Environmental Research and Public Health, 2017, 14, 196.	1.2	50
46	Psychological Distress and Zika, Dengue and Chikungunya Symptoms Following the 2016 Earthquake in BahÃa de Caráquez, Ecuador. International Journal of Environmental Research and Public Health, 2017, 14, 1516.	1.2	14
47	Could the Recent Zika Epidemic Have Been Predicted?. Frontiers in Microbiology, 2017, 8, 1291.	1.5	35
48	Quantifying seasonal and diel variation in Anopheline and Culex human biting rates in Southern Ecuador. Malaria Journal, 2017, 16, 479.	0.8	19
49	Outbreak of Zika Virus Infections, Dominica, 2016. Emerging Infectious Diseases, 2017, 23, 1926-1927.	2.0	16
50	Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Neglected Tropical Diseases, 2017, 11, e0006150.	1.3	49
51	Analysis of Health and Drug Access Associated with the Purchasing Power of the Ecuadorian Population. Global Journal of Health Science, 2016, 9, 201.	0.1	9
52	Successful malaria elimination in the Ecuador–Peru border region: epidemiology and lessons learned. Malaria Journal, 2016, 15, 573.	0.8	46
53	Knowledge, attitudes, and practices regarding dengue infection among public sector healthcare providers in Machala, Ecuador. Tropical Diseases, Travel Medicine and Vaccines, 2016, 2, 8.	0.9	28
54	Micronutrients and Leptospirosis: A Review of the Current Evidence. PLoS Neglected Tropical Diseases, 2016. 10. e0004652.	1.3	11

#	Article	lF	CITATIONS
55	Artificial Infant Formula Consumption and Breastfeeding Trends in Ecuador, A Population-Based Analysis from 2007 to 2014. Global Journal of Health Science, 2016, 8, 184.	0.1	3
56	Análisis de inundaciones costeras por precipitaciones intensas, cambio climático y fenómeno de El Niño. Caso de estudio: Machala Granja, 2016, 24, .	0.1	3
57	Rabies Epidemiology and Control in Ecuador. Clobal Journal of Health Science, 2015, 8, 113.	0.1	12
58	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	0.9	87
59	A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health, 2014, 14, 1135.	1.2	62
60	Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infectious Diseases, 2014, 14, 610.	1.3	88
61	Climate and Non-Climate Drivers of Dengue Epidemics in Southern Coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2013, 88, 971-981.	0.6	127
62	Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLoS ONE, 2013, 8, e78263.	1.1	168