Liberata Guadagno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 2009, 47, 2419-2430.	5.4	150
2	Development of epoxy mixtures for application in aeronautics and aerospace. RSC Advances, 2014, 4, 15474-15488.	1.7	133
3	Chemical and morphologial modifications of irradiated linear low density polyethylene (LLDPE). Polymer Degradation and Stability, 2001, 72, 175-186.	2.7	105
4	Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Composites Part B: Engineering, 2018, 140, 44-56.	5.9	98
5	The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 2013, 24, 305704.	1.3	97
6	Mesomorphic Form of Syndiotactic Polypropylene. Macromolecules, 2000, 33, 6200-6204.	2.2	92
7	Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain. Composites Part A: Applied Science and Manufacturing, 2015, 71, 9-16.	3.8	84
8	Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Composites Part B: Engineering, 2018, 145, 90-99.	5.9	79
9	Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology, 2017, 28, 094001.	1.3	72
10	Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 2015, 5, 27874-27886.	1.7	67
11	Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Materials and Structures, 2014, 23, 045001.	1.8	65
12	Carbon‣upported Copper Nanomaterials: Recyclable Catalysts for Huisgen [3+2] Cycloaddition Reactions. Chemistry - A European Journal, 2015, 21, 10763-10770.	1.7	65
13	Development of self-healing multifunctional materials. Composites Part B: Engineering, 2017, 128, 30-38.	5.9	58
14	Reversible Self-Healing Carbon-Based Nanocomposites for Structural Applications. Polymers, 2019, 11, 903.	2.0	58
15	Use of Hoveyda–Grubbs' second generation catalyst in self-healing epoxy mixtures. Composites Part B: Engineering, 2011, 42, 296-301.	5.9	55
16	Polymorphism of Oriented Syndiotactic Polypropylene. Macromolecules, 2000, 33, 6023-6030.	2.2	51
17	Cure Behavior and Physical Properties of Epoxy Resin—Filled with Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 2686-2693.	0.9	49
18	Elasticity of the Oriented Mesomorphic Form of Syndiotactic Polypropylene. Macromolecules, 2002, 35, 3921-3927.	2.2	47

#	Article	IF	CITATIONS
19	Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Composites Part B: Engineering, 2018, 143, 148-160.	5.9	47
20	Cure behavior and mechanical properties of structural selfâ€healing epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2413-2423.	2.4	45
21	Structure and Physical Properties of Syndiotactic Polypropylene Oriented from Different Polymorphs. Macromolecules, 2001, 34, 2512-2521.	2.2	44
22	Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polymer Composites, 2015, 36, 1152-1160.	2.3	44
23	Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polymer Degradation and Stability, 2010, 95, 1614-1626.	2.7	43
24	Nanocarbon/Poly(Lactic) Acid for 3D Printing: Effect of Fillers Content on Electromagnetic and Thermal Properties. Materials, 2019, 12, 2369.	1.3	42
25	Mechanical and transport properties of irradiated linear low density polyethylene (LLDPE). Polymer Degradation and Stability, 2001, 72, 239-247.	2.7	41
26	Multifunctionality of structural nanohybrids: the crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology, 2020, 31, 225708.	1.3	41
27	Comparison of the physical properties of epoxyâ€based composites filled with different types of carbon nanotubes for aeronautic applications. Advances in Polymer Technology, 2012, 31, 205-218.	0.8	39
28	Photooxidation of spherilene linear low-density polyethylene films subjected to environmental weathering. 1. Changes in mechanical properties. Polymer Degradation and Stability, 2004, 85, 1009-1013.	2.7	38
29	Improvement of the electrical conductivity in multiphase epoxy-based MWCNT nanocomposites by means of an optimized clay content. Composites Science and Technology, 2013, 89, 69-76.	3.8	38
30	Healing efficiency of epoxyâ€based materials for structural applications. Polymer Composites, 2013, 34, 1525-1532.	2.3	37
31	Self-repairing CFRPs targeted towards structural aerospace applications. International Journal of Structural Integrity, 2016, 7, 656-670.	1.8	34
32	Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability. Materials, 2017, 10, 943.	1.3	34
33	Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes. Materials, 2017, 10, 1131.	1.3	34
34	Hygrothermal durability of epoxy adhesives used in civil structural applications. Composite Structures, 2021, 265, 113591.	3.1	34
35	Synthesis of ruthenium catalysts functionalized graphene oxide for self-healing applications. Polymer, 2015, 69, 330-342.	1.8	33
36	Damage Monitoring of Structural Resins Loaded with Carbon Fillers: Experimental and Theoretical Study. Nanomaterials, 2020, 10, 434.	1.9	32

#	Article	IF	CITATIONS
37	Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. Nanomaterials, 2021, 11, 848.	1.9	29
38	Development of a new stable ruthenium initiator suitably designed for self-repairing applications in high reactive environments. Journal of Industrial and Engineering Chemistry, 2017, 54, 234-251.	2.9	28
39	An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers, 2022, 14, 1548.	2.0	26
40	Experimental evaluation and modeling of thermal conductivity of tetrafunctional epoxy resin containing different carbon nanostructures. Polymer Engineering and Science, 2017, 57, 779-786.	1.5	25
41	Development of Form II Crystallinity in Oriented Syndiotactic Polypropylene:Â Role of the trans-Planar Mesophaseâ€. Macromolecules, 2003, 36, 6756-6765.	2.2	24
42	Low-Voltage Icing Protection Film for Automotive and Aeronautical Industries. Nanomaterials, 2020, 10, 1343.	1.9	23
43	Fatigue delamination of a carbon fabric/epoxy laminate with carbon nanotubes. Composites Science and Technology, 2016, 131, 32-39.	3.8	22
44	Protection of graphene supported ROMP catalyst through polymeric globular shell in self-healing materials. Composites Part B: Engineering, 2017, 116, 352-360.	5.9	22
45	Different Methods of Dispersing Carbon Nanotubes in Epoxy Resin and Initial Evaluation of the Obtained Nanocomposite as a Matrix of Carbon Fiber Reinforced Laminate in Terms of Vibroacoustic Performance and Flammability. Materials, 2019, 12, 2998.	1.3	22
46	Development and characterization of antitumoral electrospun polycaprolactone/functionalized Fe3O4 hybrid membranes. Materials Today Chemistry, 2020, 17, 100309.	1.7	21
47	Temperature and Orientation Induced Polymorphic Behavior of Syndiotactic Polypropylene. Macromolecules, 2005, 38, 8755-8764.	2.2	20
48	Thermal conductivity of epoxy resins filled with <scp>MWCNT</scp> and hydrotalcite clay: Experimental data and theoretical predictive modeling. Polymer Composites, 2015, 36, 1118-1123.	2.3	19
49	Multi-functional nanotechnology integration for aeronautical structures performance enhancement. International Journal of Structural Integrity, 2018, 9, 737-752.	1.8	19
50	Multifunctional Performance of a Nano-Modified Fiber Reinforced Composite Aeronautical Panel. Materials, 2019, 12, 869.	1.3	19
51	Rheological and Morphological Properties of Non-Covalently Functionalized Graphene-Based Structural Epoxy Resins with Intrinsic Electrical Conductivity and Thermal Stability. Nanomaterials, 2020, 10, 1310.	1.9	19
52	Eco-friendly polymer nanocomposites designed for self-healing applications. Polymer, 2021, 223, 123718.	1.8	18
53	Behavior of epoxy composite resins in environments at high moisture content. Journal of Polymer Research, 2013, 20, 1.	1.2	17
54	Electrical Current Map and Bulk Conductivity of Carbon Fiber-Reinforced Nanocomposites. Polymers, 2019, 11, 1865.	2.0	17

#	Article	IF	CITATIONS
55	Structural and Morphological Changes during UV Irradiation of the Crystalline Helical Form of Syndiotactic Polypropylene. Macromolecules, 2004, 37, 9826-9834.	2.2	16
56	Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles. Polymers, 2019, 11, 832.	2.0	16
57	Flexible eco-friendly multilayer film heaters. Composites Part B: Engineering, 2021, 224, 109208.	5.9	16
58	Influence of the Initial Morphology on the Elasticity of Oriented Syndiotactic Polypropylene. Macromolecules, 2004, 37, 5977-5984.	2.2	15
59	Influence of nanofiller morphology on the viscoelastic properties of CNF/epoxy resins. AIP Conference Proceedings, 2014, , .	0.3	15
60	Simulation of self-heating process on the nanoscale: a multiscale approach for molecular models of nanocomposite materials. Nanoscale Advances, 2020, 2, 3164-3180.	2.2	15
61	Design of Multifunctional Composites: New Strategy to Save Energy and Improve Mechanical Performance. Nanomaterials, 2020, 10, 2285.	1.9	14
62	Functional structural nanocomposites with integrated self-healing ability. Materials Today: Proceedings, 2021, 34, 243-249.	0.9	14
63	Thermal and mechanical characterization of complex electrospun systems based on polycaprolactone and gelatin. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5391-5399.	2.0	14
64	Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites. International Journal of Aerospace Engineering, 2016, 2016, 1-10.	0.5	13
65	New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization. Journal of Molecular Structure, 2017, 1130, 400-407.	1.8	13
66	Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate. Progress in Organic Coatings, 2019, 135, 7-18.	1.9	13
67	Structural and morphological changes during UV irradiation of the trans-planar form of syndiotactic polypropylene. Polymer Degradation and Stability, 2008, 93, 176-187.	2.7	12
68	Dependence of electrical properties of polypropylene isomers on morphology and chain conformation. Journal Physics D: Applied Physics, 2009, 42, 135405.	1.3	12
69	Encapsulation of health-monitoring agent in poly-methyl-methacrylate microcapsules using supercritical emulsion extraction. Journal of Industrial and Engineering Chemistry, 2020, 90, 287-299.	2.9	11
70	Tunneling Atomic Force Microscopy Analysis of Supramolecular Self-Responsive Nanocomposites. Polymers, 2021, 13, 1401.	2.0	11
71	UV Irradiated Graphene-Based Nanocomposites: Change in the Mechanical Properties by Local HarmoniX Atomic Force Microscopy Detection. Materials, 2019, 12, 962.	1.3	10
72	Resistive Response of Carbon Nanotube-Based Composites Subjected to Water Aging. Nanomaterials, 2021, 11, 2183.	1.9	10

#	Article	IF	CITATIONS
73	High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane. Aerospace, 2022, 9, 222.	1.1	10
74	Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells. International Journal of Molecular Sciences, 2022, 23, 7147.	1.8	10
75	Electrical properties of multi-walled carbon nanotube/tetrafunctional epoxy-amine composites. , 2012, , .		9
76	Mechanical properties of a carbon fabric-reinforced epoxy composite with carbon nanotubes and a flame retardant. International Journal of Structural Integrity, 2016, 7, 630-644.	1.8	9
77	Dynamic Mechanical Properties of Structural Self-Healing Epoxy Resins. Applied Mechanics and Materials, 0, 62, 95-105.	0.2	8
78	Effect of incorporation of carbon nanotubes on the mechanical properties of epoxy-amine composites. AIP Conference Proceedings, 2012, , .	0.3	8
79	Application of Self-Healing Materials in Aerospace Engineering. , 2013, , 401-412.		8
80	Damping assessment of new multifunctional epoxy resin for aerospace structures. Materials Today: Proceedings, 2021, 34, 180-183.	0.9	8
81	Self-Sensing Nanocomposites for Structural Applications: Choice Criteria. Nanomaterials, 2021, 11, 833.	1.9	8
82	Sugarcane Bagasse-Derived Activated Carbon- (AC-) Epoxy Vitrimer Biocomposite: Thermomechanical and Self-Healing Performance. International Journal of Polymer Science, 2021, 2021, 1-7.	1.2	8
83	Analysis of the Effects of Hydrotalcite Inclusion on the Temperature-Sensing Properties of CNT-Epoxy Nanocomposites. IEEE Sensors Journal, 2016, 16, 7977-7985.	2.4	7
84	Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials, 2021, 11, 2427.	1.9	7
85	Design of self-healing biodegradable polymers. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5463-5472.	2.0	7
86	Healing efficiency of epoxy-based materials for structural application. AIP Conference Proceedings, 2012, , .	0.3	6
87	Development of multifunctional carbon fiber reinforced composites (CFRCs) - Manufacturing process. , 2014, , .		6
88	The influence of different dispersion methods on the size of the aggregate of CNTs in epoxy resin for the manufacturing of carbon fiber reinforced composites. AIP Conference Proceedings, 2016, , .	0.3	6
89	Design of self-healing catalysts for aircraft application. International Journal of Structural Integrity, 2018, 9, 723-736.	1.8	6
90	Graphene/epoxy resins: Rheological behavior and morphological analysis by Atomic Force Microscopy (AFM). Materials Today: Proceedings, 2021, 34, 160-163.	0.9	6

#	Article	IF	CITATIONS
91	Cast-extruded syndiotactic polypropylene films: preliminary structural and mechanical results. Macromolecular Symposia, 2002, 180, 23-32.	0.4	5
92	Structural changes during annealing of the crystalline helical form of syndiotactic polypropylene. Journal of Macromolecular Science - Physics, 2002, 41, 289-305.	0.4	5
93	Morphology and Elasticity of Oriented Syndiotactic Polypropylene from Solvent Cast Films. Crystal Growth and Design, 2006, 6, 1703-1710.	1.4	4
94	Viscoelastic properties of graphene-based epoxy resins. AIP Conference Proceedings, 2015, , .	0.3	4
95	Dynamic performance of self-sensing epoxy resin for aerospace structures. AIP Conference Proceedings, 2018, , .	0.3	4
96	Electromagnetic Characterization of Polycaprolactone electrospun nanofibers filled with Fe ₃ O ₄ Nanoparticles. , 2020, , .		4
97	Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures. , 2018, , .		4
98	Thermo-mechanical properties and electrical mapping of nanoscale domains of carbon-based structural resins. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5473-5481.	2.0	4
99	Evaluation of the electrical properties of epoxy-based nanocomposites for motor insulation. , 2011, , .		3
100	Rheological and morphological properties of graphene-epoxy nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	3
101	Development of aeronautical epoxy nanocomposites having an integrated selfhealing ability. MATEC Web of Conferences, 2018, 233, 00021.	0.1	3
102	Thermal degradation and fire properties of epoxy modified resins. AIP Conference Proceedings, 2018, , .	0.3	3
103	Mechanoâ€reversible physical aging of elastic oriented syndiotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 599-606.	2.4	2
104	Self-sensing nanocomposites in automotive/aeronautic field. Materials Today: Proceedings, 2021, 34, 125-127.	0.9	2
105	Thermal conductivity of epoxy nanocomposites filled with MWCNT and hydrotalcite clay: A preliminary study. , 2014, , .		1
106	Morphological and electrical characterization of epoxy resin filled with exfoliated graphite. , 2015, , .		1
107	Multidisciplinary challenge in the design of a MWCNTs-based polymer smart structure. MATEC Web of Conferences, 2018, 233, 00024.	0.1	1
108	Anisotropic thermal conductivity study of nano-additives/epoxy based nanocomposites. AIP Conference Proceedings, 2018, , .	0.3	1

#	Article	IF	CITATIONS
109	Strong Interaction with Carbon Filler of Polymers Obtained by Pyrene Functionalized Hoveyda-Grubbs 2nd Generation Catalyst. Polymers, 2019, 11, 1261.	2.0	1
110	Effect of functionalized carbon nanofillers on the rheological behavior of structural epoxy resins. AIP Conference Proceedings, 2019, , .	0.3	1
111	Electrical behavior at nanometer scale of functionalized graphene-based structural resins. AIP Conference Proceedings, 2021, , .	0.3	1
112	Temperature effects on the electrical properties of multiphase polymer composites. , 2014, , .		0
113	Thermal investigation of tetrafunctional epoxy resin filled with different carbonaceous nanostructures. AIP Conference Proceedings, 2016, , .	0.3	0
114	Morphological and electrical properties of epoxy-based composites reinforced with exfoliated graphite. AIP Conference Proceedings, 2016, , .	0.3	0
115	Nanocomposites conductivity point measurement using Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00022.	0.1	0
116	Electrical characterization of aeronautical nanocomposites supported by Tunneling AFM (TUNA). MATEC Web of Conferences, 2018, 233, 00023.	0.1	0
117	Enhanced Durability of Graphene-Based Epoxy Films. Key Engineering Materials, 2019, 813, 279-284.	0.4	0
118	New Aircraft Anti/de-Icing Technologies. IOP Conference Series: Materials Science and Engineering, 2021, 1024, 012012.	0.3	0
119	Special Issue "10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens― Aerospace, 2021, 8, 111.	1.1	0
120	Investigation of Electrical Properties of Graphene-Based Nanocomposites Supported by Tunnelling AFM (TUNA). Lecture Notes in Electrical Engineering, 2020, , 375-387.	0.3	0