
Gulam Mustafa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4014833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. International Journal of Pharmaceutics, 2022, 612, 121306.	5.2	20
2	Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. Pharmaceuticals, 2022, 15, 371.	3.8	34
3	Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Frontiers in Pharmacology, 2022, 13, 805388.	3.5	22
4	A Novel Approach of Targeting Linezolid Nanoemulsion for the Management of Lymph Node Tuberculosis. ACS Omega, 2022, 7, 15688-15694.	3.5	11
5	Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules, 2022, 27, 3994.	3.8	43
6	Treatment Options Available for COVID-19 and an Analysis on Possible Role of Combination of rhACE2, Angiotensin (1-7) and Angiotensin (1-9) as Effective Therapeutic Measure. SN Comprehensive Clinical Medicine, 2020, 2, 1761-1766.	0.6	21
7	Self-Nanoemulsifying Drug Delivery System for Improving Efficacy of Bioactive Phytochemicals. , 2020, , 71-87.		1
8	3D Printing Technology in Customized Drug Delivery System: Current State of the Art, Prospective and the Challenges. Current Pharmaceutical Design, 2019, 24, 5049-5061.	1.9	19
9	β-Naphthalene Incorporated Thiazole-5-Carboxamides/Thiazole -5- Ketones: Design, Synthesis and Anticonvulsant Screening against Two Seizure Models. American Journal of Pharmacology and Toxicology, 2019, 14, 27-37.	0.7	1
10	STUDY OF ENHANCED ANTI-INFLAMMATORY POTENTIAL OF NIGELLA SATIVA IN TOPICAL NANOFORMULATION. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10, 41.	0.3	11
11	Brain targeting by intranasal drug delivery (INDD): a combined effect of trans-neural and para-neuronal pathway. Drug Delivery, 2016, 23, 923-929.	5.7	16
12	Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study. Drug Delivery, 2016, 23, 930-940.	5.7	45
13	Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Development and Industrial Pharmacy, 2015, 41, 1922-1934.	2.0	57
14	Nano-ropinirole for the management of Parkinsonism: blood–brain pharmacokinetics and carrier localization. Expert Review of Neurotherapeutics, 2015, 15, 695-710.	2.8	36
15	Formulation, Optimization and Evaluation of Nanostructured Lipid Carrier System of Acyclovir for Topical Delivery. Journal of Bionanoscience, 2014, 8, 235-247.	0.4	4
16	Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson's disease by reducing oxidative stress. Nanotechnology, 2014, 25, 485102.	2.6	138
17	Box-Behnken supported validation of stability-indicating high performance thin-layer chromatography (HPTLC) method: An application in degradation kinetic profiling of ropinirole. Saudi Pharmaceutical Journal, 2013, 21, 93-102.	2.7	18
18	UHPLC/ESIâ€Qâ€TOFâ€MS method for the measurement of dopamine in rodent striatal tissue: A comparative effects of intranasal administration of ropinirole solution over nanoemulsion. Drug Testing and Analysis, 2013, 5, 702-709.	2.6	16

Gulam Mustafa

#	Article	IF	CITATIONS
19	Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. European Journal of Pharmaceutical Sciences, 2013, 48, 393-405.	4.0	232
20	Nose to Brain Targeting Potential of a ChitosanCoated Nano-Formulation: Pharmacodynamic and Pharmacoscintigraphic Evaluation. Science of Advanced Materials, 2013, 5, 1236-1249.	0.7	8
21	Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. International Journal of Nanomedicine, 2012, 7, 5705.	6.7	166
22	Stressed Kinetics of Nanoemulsion Formulation Encapsulated Ropinirole with a Validated Ultra High Performance Liquid Chromatography-Synapt Mass Spectrometry (UPLC-MS/MS ESI-Q-TOF). Journal of the Chinese Chemical Society, 2012, 59, 1021-1030.	1.4	3
23	Design Expert-Supported Development and Validation of High-Performance Thin-Layer Chromatographic Stability-Indicating (HPTLC) Method: an Application in Quantitative Analysis of Ropinirole in the Bulk Drug and in Marketed Dosage Forms. Journal of Pharmaceutical Innovation, 2012. 7. 47-55.	2.4	8
24	Effect of Homogenization on the Fate of True Nanoemulsion in Brain Translocation: A Gamma Scintigraphic Evaluation. Science of Advanced Materials, 2012, 4, 739-748.	0.7	8
25	Formulation Development of Chitosan Coated Intra Nasal Ropinirole Nanoemulsion for Better Management Option of Parkinson: An In Vitro Ex Vivo Evaluation. Current Nanoscience, 2012, 8, 348-360.	1.2	37
26	STABILITY-INDICATING RP-HPLC METHOD FOR ANALYSIS OF ATORVASTATIN IN BULK DRUG, MARKETED TABLET AND NANOEMULSION FORMULATION. Journal of the Chilean Chemical Society, 2010, 55, .	1.2	6
27	Transdermal and Topical Delivery of Anti-inflammatory Agents Using Nanoemulsion/Microemulsion: An Updated Review. Current Nanoscience, 2010, 6, 184-198.	1.2	34
28	Bioanalytical approaches, bioavailability assessment, and bioequivalence study for waiver drugs: In vivo and in vitro perspective. Clinical Research and Regulatory Affairs, 2010, 27, 32-41.	2.1	1
29	Preparation and Characterization of Oil in Water Nano-Reservoir Systems for Improved Oral Delivery of Atorvastatin. Current Nanoscience, 2009, 5, 428-440.	1.2	31
30	Solid Self-Nanoemulsifying Delivery Systems as a Platform Technology for Formulation of Poorly Soluble Drugs. Critical Reviews in Therapeutic Drug Carrier Systems, 2008, 25, 63-116.	2.2	42