Iman Eshraghi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4014603/iman-eshraghi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20	301	11	17
papers	citations	h-index	g-index
20	337 ext. citations	3.5	3.75
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
20	Forced vibrations of functionally graded annular and circular plates by domain-boundary element method. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2020, 100, e201900048	1	3
19	Domain-boundary element method for forced vibrations of fiber-reinforced laminated beams. International Journal for Computational Methods in Engineering Science and Mechanics, 2020, 21, 141-158	3 ^{0.7}	O
18	Domain-boundary element method for elastodynamics of functionally graded Timoshenko beams. <i>Computers and Structures</i> , 2018 , 195, 113-125	4.5	16
17	Hyperbolic heat conduction based weight function method for thermal fracture of functionally graded hollow cylinders. <i>International Journal of Pressure Vessels and Piping</i> , 2018 , 165, 249-262	2.4	9
16	Fracture Performance of Type 304 Stainless Steel Reinforcement Belt from Cryogenic to Elevated Temperatures. <i>Experimental Techniques</i> , 2017 , 41, 615-625	1.4	3
15	Weight function method for transient thermomechanical fracture analysis of a functionally graded hollow cylinder possessing a circumferential crack. <i>Journal of Thermal Stresses</i> , 2016 , 39, 1182-1199	2.2	3
14	Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading. <i>Composite Structures</i> , 2016 , 137, 196-207	5.3	52
13	Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials. <i>Structural Engineering and Mechanics</i> , 2016 , 58, 217-230		2
12	Transient Stress Intensity Factors of Functionally Graded Hollow Cylinders with Internal Circumferential Cracks. <i>Latin American Journal of Solids and Structures</i> , 2016 , 13, 1738-1762	1.4	3
11	Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory. <i>Materials</i> , 2016 , 9,	3.5	9
10	Consideration of spatial variation of the length scale parameter in static and dynamic analyses of functionally graded annular and circular micro-plates. <i>Composites Part B: Engineering</i> , 2015 , 78, 338-348	10	33
9	Thermal stress intensity factor expressions for functionally graded cylinders with internal circumferential cracks using the weight function method. <i>Theoretical and Applied Fracture Mechanics</i> , 2015 , 80, 170-181	3.7	13
8	Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach. <i>Engineering Fracture Mechanics</i> , 2015 , 134, 1-19	4.2	21
7	Nonlinear vibration analysis of FGER sandwich beams. <i>International Journal of Mechanical Sciences</i> , 2014 , 78, 167-176	5.5	19
6	Optimal parameters estimation and vibration control of a viscoelastic adaptive sandwich beam incorporating an electrorheological fluid layer. <i>JVC/Journal of Vibration and Control</i> , 2014 , 20, 1855-186.	8	14
5	Effect of subset parameters selection on the estimation of mode-I stress intensity factor in a cracked PMMA specimen using digital image correlation. <i>Polymer Testing</i> , 2014 , 37, 193-200	4.5	21
4	Investigation of fracture parameters of edge V-notches in a polymer material using digital image correlation. <i>Polymer Testing</i> , 2013 , 32, 778-784	4.5	20

LIST OF PUBLICATIONS

3	On the vibration behavior of functionally graded electrorheological sandwich beams. <i>International Journal of Mechanical Sciences</i> , 2013 , 70, 130-139	5.5	34
2	Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam. <i>Meccanica</i> , 2012 , 47, 1945-1960	2.1	24
1	Static Analysis of a Functionally Graded Piezoelectric Beam Using Finite Element Method 2010 ,		2