Gonzalez Begoa

List of Publications by Citations

Source: https://exaly.com/author-pdf/4014185/gonzalez-begona-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,639 38 73 59 h-index g-index citations papers 3,926 3.2 5.45 74 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
73	Physical Properties of Pure 1-Ethyl-3-methylimidazolium Ethylsulfate and Its Binary Mixtures with Ethanol and Water at Several Temperatures. <i>Journal of Chemical & Data</i> , 2006, 51, 2096	5 22 8102	322
72	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T=(293.15, 298.15, and 303.15)K. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1578-1588	2.9	263
71	Dynamic Viscosities of a Series of 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids and Their Binary Mixtures with Water at Several Temperatures. <i>Journal of Chemical & Data</i> , 2006, 51, 696-701	2.8	259
70	Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure. <i>Journal of Chemical & Data</i> , 2007 , 52, 1641-1648	2.8	140
69	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure. <i>Journal of Chemical & Digineering Data</i> , 2004 , 49, 1590-159	2.8 6	135
68	Vaporliquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3-methylimidazolium Chloride and the Corresponding Binary Systems at 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 2178-2181	2.8	97
67	Vapor l iquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3-methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa. <i>Journal of Chemical & Dournal & Dournal</i>	2.8	96
66	Study of the behaviour of the azeotropic mixture ethanol water with imidazolium-based ionic liquids. Fluid Phase Equilibria, 2007, 259, 51-56	2.5	82
65	(Liquid+liquid) equilibria for ternary mixtures of (alkane+benzene+[EMpy] [ESO4]) at several temperatures and atmospheric pressure. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1215-1221	2.9	80
64	Viscosities, densities and speeds of sound of the binary systems: 2-propanol with octane, or decane, or dodecane at T=(293.15, 298.15, and 303.15) K. <i>Journal of Chemical Thermodynamics</i> , 2003 , 35, 939-953	2.9	77
63	Esterification of acetic acid with ethanol: Reaction kinetics and operation in a packed bed reactive distillation column. <i>Chemical Engineering and Processing: Process Intensification</i> , 2007 , 46, 1317-1323	3.7	74
62	Physical properties of the ternary system (ethanol+water+1-butyl-3-methylimidazolium methylsulphate) and its binary mixtures at several temperatures. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1274-1281	2.9	71
61	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures. <i>Journal of Chemical & Data</i> , Engineering Data, 2010 , 55, 1003-1011	2.8	61
60	Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [Cmim]FSI. <i>Journal of Environmental Management</i> , 2018 , 228, 475-482	7.9	59
59	Viscosity, density, and speed of sound of methylcyclopentane with primary and secondary alcohols at T=(293.15, 298.15, and 303.15)K. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 1172-1185	2.9	54
58	Dynamic Viscosities of 2-Pentanol with Alkanes (Octane, Decane, and Dodecane) at Three Temperatures T = (293.15, 298.15, and 303.15) K. New UNIFACI/ISCO Interaction Parameters. Journal of Chemical & Data, 2004, 49, 1225-1230	2.8	54
57	Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols. <i>Journal of Chemical & Data</i> , 2013, 58, 1440-1448	2.8	53

56	Liquid Liquid Equilibrium for Ternary Mixtures of Hexane + Aromatic Compounds + [EMpy][ESO4] at T = 298.15 K. <i>Journal of Chemical & Data</i> , 2010, 55, 633-638	2.8	53
55	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 322-334	2.9	53
54	Excess molar properties of ternary system (ethanol+water+1,3-dimethylimidazolium methylsulphate) and its binary mixtures at several temperatures. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1208-1216	2.9	53
53	Dynamic viscosities of 2-butanol with alkanes (C8, C10, and C12) at several temperatures. <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 267-275	2.9	52
52	Osmotic coefficients of aqueous solutions of four ionic liquids at T=(313.15 and 333.15) K. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1346-1351	2.9	51
51	Vaporlliquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3-methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 1004-1008	2.8	50
50	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 2294-2305	2.8	49
49	Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water + 1-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the Ternary Systems. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 881-887	2.8	48
48	Synthesis and Physical Properties of 1-Ethyl 3-methylpyridinium Ethylsulfate and Its Binary Mixtures with Ethanol and Water at Several Temperatures. <i>Journal of Chemical & Data</i> , 2008, 53, 1824-1828	2.8	48
47	Osmotic coefficients of binary mixtures of four ionic liquids with ethanol or water at T=(313.15 and 333.15)K. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 11-16	2.9	47
46	Experimental densities, refractive indices, and speeds of sound of 12 binary mixtures containing alkanes and aromatic compounds at T=313.15K. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 939-944	2.9	47
45	Separation of toluene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T=298.15K and atmospheric pressure. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 752-757	2.9	47
44	Experimental Determination, Correlation, and Prediction of Physical Properties of the Ternary Mixtures Ethanol + Water with 1-Octyl-3-methylimidazolium Chloride and 1-Ethyl-3-methylimidazolium Ethylsulfate. <i>Journal of Chemical & Design Beta</i> , 2007, 52, 2529-2	2.8 2 535	46
43	Synthesis and Physical Properties of 1-Ethylpyridinium Ethylsulfate and its Binary Mixtures with Ethanol and 1-Propanol at Several Temperatures. <i>Journal of Chemical & Data</i> , 2009, 54, 1353-1358	2.8	45
42	Removing phenolic pollutants using Deep Eutectic Solvents. <i>Separation and Purification Technology</i> , 2019 , 227, 115703	8.3	42
41	Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent. <i>Journal of Chemical & Data</i> , 2010, 55, 4931-4936	2.8	42
40	Ionic liquids as solvents to separate the azeotropic mixture hexane/ethanol. <i>Fluid Phase Equilibria</i> , 2013 , 337, 11-17	2.5	40
39	Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at $T = 283.15$ and 298.15 K. <i>Physics and Chemistry of Liquids</i> , 2010 , 48, 514-533	1.5	40

38	Experimental Vaporliquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3-methylpyridinium Ethylsulfate and the Corresponding Binary Systems at 101.3 kPa: Study of the Effect of the Cation. <i>Journal of Chemical & Data</i> , 2010, 55, 2786-2791	2.8	40
37	Physical Properties of the Pure Deep Eutectic Solvent, [ChCl]:[Lev] (1:2) DES, and Its Binary Mixtures with Alcohols. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 4191-4202	2.8	39
36	Measurement and correlation of liquid Iquid equilibria for ternary systems {cyclooctane+aromatic hydrocarbon+1-ethyl-3-methylpyridinium ethylsulfate} at T=298.15K and atmospheric pressure. Fluid Phase Equilibria, 2010, 291, 59-65	2.5	39
35	1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures. <i>Journal of Chemical Thermodynamics</i> , 2012 , 53, 152-157	2.9	36
34	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 1334-1339	2.8	36
33	Physical properties of seven deep eutectic solvents based on l-proline or betaine. <i>Journal of Chemical Thermodynamics</i> , 2019 , 131, 517-523	2.9	36
32	Physicochemical Characterization of New Sulfate Ionic Liquids. <i>Journal of Chemical & Ch</i>	2.8	35
31	LiquidIquid equilibria for ternary systems of {cyclohexane+aromatic compounds+1-ethyl-3-methylpyridinium ethylsulfate}. Fluid Phase Equilibria, 2010, 296, 213-218	2.5	35
30	Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters. Journal of Chemical Thermodynamics, 2006 , 38, 707-716	2.9	33
29	Physical Properties of the Ternary Mixture Ethanol+Water+1-Butyl-3-Methylimidazolium Chloride at 298.15 K. <i>Journal of Solution Chemistry</i> , 2006 , 35, 1217-1225	1.8	33
28	Extraction of phenolic compounds from hazelnut shells by green processes <i>Journal of Food Engineering</i> , 2019 , 255, 1-8	6	31
27	Ethanol extraction from its azeotropic mixture with hexane employing different ionic liquids as solvents. <i>Journal of Chemical Thermodynamics</i> , 2012 , 55, 138-143	2.9	30
26	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three TemperaturesT= (293.15, 298.15, and 303.15) K. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1462-1469	2.8	30
25	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFACVISCO Interaction Parameters. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 1076-1087	2.8	30
24	Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols. <i>Journal of Chemical Thermodynamics</i> , 2014 , 68, 109-116	6 ^{2.9}	29
23	Capacity of two 1-butyl-1-methylpyrrolidinium-based ionic liquids for the extraction of ethanol from its mixtures with heptane and hexane. <i>Fluid Phase Equilibria</i> , 2013 , 354, 89-94	2.5	26
22	Osmotic coefficients of binary mixtures of 1-butyl-3-methylimidazolium methylsulfate and 1,3-dimethylimidazolium methylsulfate with alcohols at T=323.15K. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 617-622	2.9	26
21	Application of [EMpy][ESO4] ionic liquid as solvent for the liquid extraction of xylenes from hexane. <i>Fluid Phase Equilibria</i> , 2010 , 295, 249-254	2.5	26

(2020-2020)

20	Removal of phenolic pollutants from wastewater streams using ionic liquids. <i>Separation and Purification Technology</i> , 2020 , 236, 116310	8.3	26
19	Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents. <i>Separation and Purification Technology</i> , 2020 , 241, 116692	8.3	24
18	LiquidDiquid Equilibria of the Ternary Systems of Alkane + Aromatic + 1-Ethylpyridinium Ethylsulfate Ionic Liquid at T = (283.15 and 298.15) K. <i>Journal of Chemical & Data</i> , 2010, 55, 5169-5175	2.8	22
17	Application of 1-alkyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids for the ethanol removal from its mixtures with alkanes. <i>Journal of Chemical Thermodynamics</i> , 2013 , 60, 9-14	2.9	20
16	Cation effect of ammonium imide based ionic liquids in alcohols extraction from alcohol-alkane azeotropic mixtures. <i>Journal of Chemical Thermodynamics</i> , 2014 , 68, 32-39	2.9	19
15	Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T=323.15K. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1439-1445	2.9	19
14	Using bis(trifluoromethylsulfonyl)imide based ionic liquids to extract phenolic compounds. <i>Journal of Chemical Thermodynamics</i> , 2019 , 131, 159-167	2.9	18
13	Effect of the relative humidity and isomeric structure on the physical properties of pyridinium based-ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2015 , 86, 96-105	2.9	14
12	Study of [EMim][ESO4] ionic liquid as solvent in the liquid [liquid extraction of xylenes from their mixtures with hexane. <i>Fluid Phase Equilibria</i> , 2011 , 305, 227-232	2.5	14
11	Densities and Derived Volumetric Properties of Ionic Liquids with [Nf2] and [NTf2] Anions at High Pressures. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 954-964	2.8	11
10	Activity coefficients at infinite dilution for different alcohols and ketones in [EMpy][ESO4]: Experimental data and modeling with PC-SAFT. <i>Fluid Phase Equilibria</i> , 2016 , 424, 32-40	2.5	8
9	Cosolvent effect on physical properties of 1,3-dimethyl imidazolium dimethyl phosphate and some theoretical insights on cellulose dissolution. <i>Journal of Molecular Liquids</i> , 2018 , 265, 114-120	6	7
8	Experimental Determination, Correlation, and Prediction of Physical Properties of the Ternary Mixtures Ethanol and 1-Propanol + Water + 1-Ethyl-3-methylpyridinium Ethylsulfate at 298.15 K. <i>Journal of Chemical & Data</i> , 2009, 54, 2229-2234	2.8	5
7	Recovery and Elimination of Phenolic Pollutants from Water Using [NTf2] and [Nf2]-Based Ionic Liquids. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 4321	2.6	4
6	High pressure densities and derived thermodynamic properties of deep eutectic solvents with menthol and saturated fatty acids. <i>Journal of Chemical Thermodynamics</i> , 2021 , 162, 106578	2.9	3
5	Dynamic Viscosities of KI or NH4I in Methanol and NH4I in Ethanol at Several Temperatures and 0.1 MPa. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 109-112	2.8	2
4	Extraction of Carboxylic Acids from Aqueous Solutions by Using [BMim][NTf2] and Salting-out Agents. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 4717-4723	2.8	1
3	Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic liquids: Experimental data and computational analysis. <i>Journal of Molecular Liquids</i> , 2020 , 302, 112561	6	1

Hydrophobic deep eutectic solvents as extraction agents of nitrophenolic pollutants from aqueous systems. *Environmental Technology and Innovation*, **2022**, 25, 102170

7 1

Congo red recovery from water using green extraction solvents. *Water Resources and Industry*, **2022**, 27, 100170

4.5