Xiaoqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4014063/publications.pdf

Version: 2024-02-01

471509 526287 27 845 17 27 citations h-index g-index papers 27 27 27 604 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review on anti-cancer effect of green tea catechins. Journal of Functional Foods, 2020, 74, 104172.	3.4	94
2	Tuning complexation of carboxymethyl cellulose/ cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocolloids, 2021, 110, 106135.	10.7	68
3	Physicochemical characteristics of polysaccharide conjugates prepared from fresh tea leaves and their improving impaired glucose tolerance. Carbohydrate Polymers, 2014, 112, 77-84.	10.2	57
4	A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends in Food Science and Technology, 2021, 114, 83-99.	15.1	49
5	Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of water-soluble and alkali-soluble polysaccharide conjugates prepared from green tea. Carbohydrate Polymers, 2010, 82, 28-33.	10.2	48
6	Emulsifying Properties of Polysaccharide Conjugates Prepared from Chin-Brick Tea. Journal of Agricultural and Food Chemistry, 2019, 67, 10165-10173.	5.2	48
7	Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins. Industrial Crops and Products, 2019, 140, 111611.	5.2	48
8	Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties. Food Hydrocolloids, 2021, 111, 106179.	10.7	46
9	Thermal Effects on the Stability and Antioxidant Activity of an Acid Polysaccharide Conjugate Derived from Green Tea. Journal of Agricultural and Food Chemistry, 2009, 57, 5795-5798.	5.2	44
10	Antibacterial activity and mechanism of green tea polysaccharide conjugates against Escherichia coli. Industrial Crops and Products, 2020, 152, 112464.	5.2	44
11	Effect of metal ions and pH on the emulsifying properties of polysaccharide conjugates prepared from low-grade green tea. Food Hydrocolloids, 2020, 102, 105624.	10.7	44
12	Effects of Tea-Polysaccharide Conjugates and Metal Ions on Precipitate Formation by Epigallocatechin Gallate and Caffeine, the Key Components of Green Tea Infusion. Journal of Agricultural and Food Chemistry, 2019, 67, 3744-3751.	5.2	38
13	Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chemistry, 2021, 357, 129714.	8.2	33
14	The emulsification properties of alkaline-extracted polysaccharide conjugates from Apocynum venetum L. tea residues. Food Hydrocolloids, 2022, 124, 107315.	10.7	25
15	Some Physical Properties of Protein Moiety of Alkali-Extracted Tea Polysaccharide Conjugates Were Shielded by Its Polysaccharide. Molecules, 2017, 22, 914.	3.8	23
16	Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea. Food Hydrocolloids, 2022, 129, 107667.	10.7	22
17	Impact of Polyphenol Interactions with Titanium Dioxide Nanoparticles on Their Bioavailability and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 9661-9670.	5.2	21
18	Analysis of Protein Moiety of Polysaccharide Conjugates Water-extracted from Low Grade Green Tea. Chemical Research in Chinese Universities, 2018, 34, 691-696.	2.6	17

#	Article	IF	CITATIONS
19	TiO2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chemistry, 2022, 371, 131045.	8.2	14
20	Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis). Food Chemistry, 2022, 395, 133625.	8.2	13
21	Encapsulation of fruit peel proanthocyanidins in biopolymer microgels: Relationship between structural characteristics and encapsulation/release properties. Food Hydrocolloids, 2021, 117, 106693.	10.7	10
22	Influence of thermal treatment on the physicochemical and functional properties of tea polysaccharide conjugates. LWT - Food Science and Technology, 2021, 150, 111967.	5.2	9
23	Effect of ultra-high pressure treatment on the characteristics of a tea polysaccharide conjugate aqueous solution. Industrial Crops and Products, 2021, 171, 113859.	5.2	7
24	Impact of food additive titanium dioxide on the polyphenol content and antioxidant activity of the apple juice. LWT - Food Science and Technology, 2022, 154, 112574.	5.2	7
25	Characterization of Theabrownins Prepared From Tea Polyphenols by Enzymatic and Chemical Oxidation and Their Inhibitory Effect on Colon Cancer Cells. Frontiers in Nutrition, 2022, 9, 849728.	3.7	7
26	Physicochemical and Colon Cancer Cell Inhibitory Properties of Theabrownins Prepared by Weak Alkali Oxidation of Tea Polyphenols. Plant Foods for Human Nutrition, 2022, 77, 405-411.	3.2	6
27	Emulsification of Scutellaria baicalensis Georgi polysaccharide conjugate and its inhibition on epigallocatechin (EGC) oxidation. LWT - Food Science and Technology, 2021, 143, 111175.	5.2	3