Dan-Ran Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4014/publications.pdf

Version: 2024-02-01

81839 128225 4,068 116 39 60 citations h-index g-index papers 122 122 122 3448 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Miniaturized fiber taper reflective interferometer for high temperature measurement. Optics Express, 2010, 18, 14245.	1.7	167
2	Going beyond the limit of an LCD's color gamut. Light: Science and Applications, 2017, 6, e17043-e17043.	7.7	157
3	Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light: Science and Applications, 2015, 4, e253-e253.	7.7	148
4	Digitalizing Selfâ€Assembled Chiral Superstructures for Optical Vortex Processing. Advanced Materials, 2018, 30, 1705865.	11.1	131
5	An all-optical modulator based on a stereo graphene–microfiber structure. Light: Science and Applications, 2015, 4, e360-e360.	7.7	124
6	Liquidâ€Crystalâ€Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Advanced Materials, 2020, 32, e1903665.	11.1	124
7	Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Optics Express, 2011, 19, 18452.	1.7	120
8	Lightâ€Patterned Crystallographic Direction of a Selfâ€Organized 3D Soft Photonic Crystal. Advanced Materials, 2017, 29, 1703165.	11.1	120
9	Microfiber-Based Bragg Gratings for Sensing Applications: A Review. Sensors, 2012, 12, 8861-8876.	2.1	117
10	Chirality invertible superstructure mediated active planar optics. Nature Communications, 2019, 10, 2518.	5.8	106
11	Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding. ACS Photonics, 2017, 4, 1333-1338.	3.2	93
12	Meta-q-plate for complex beam shaping. Scientific Reports, 2016, 6, 25528.	1.6	86
13	Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals. Applied Physics Letters, 2012, 101, .	1.5	85
14	Photoprogrammable Mesogenic Soft Helical Architectures: A Promising Avenue toward Future Chiroâ€Optics. Advanced Materials, 2020, 32, e1905318.	11.1	84
15	Self-polarizing terahertz liquid crystal phase shifter. AIP Advances, 2011, 1, .	0.6	81
16	Microfiber-probe-based ultrasmall interferometric sensor. Optics Letters, 2010, 35, 2308.	1.7	79
17	Polarization independent liquid crystal gratings based on orthogonal photoalignments. Applied Physics Letters, 2012, 100, 111116.	1.5	68
18	Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Science and Applications, 2021, 10, 78.	7.7	62

#	Article	IF	CITATIONS
19	Drone-based entanglement distribution towards mobile quantum networks. National Science Review, 2020, 7, 921-928.	4.6	61
20	Optical Microfiber Sensors: Sensing Mechanisms, and Recent Advances. Journal of Lightwave Technology, 2019, 37, 2577-2589.	2.7	60
21	Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals. Advanced Optical Materials, 2015, 3, 1691-1696.	3.6	58
22	Lightâ€Driven Reversible Transformation between Selfâ€Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage. Advanced Materials, 2018, 30, e1800237.	11.1	57
23	Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes. Physical Review Letters, 2021, 126, 020503.	2.9	57
24	Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Scientific Reports, 2015, 5, 17484.	1.6	55
25	Generation of Equal-Energy Orbital Angular Momentum Beams via Photopatterned Liquid Crystals. Physical Review Applied, 2016, 5, .	1.5	55
26	A miniature reflective micro-force sensor based on a microfiber coupler. Optics Express, 2014, 22, 2443.	1.7	53
27	Broadband Opticalâ€Fiberâ€Compatible Photodetector Based on a Grapheneâ€MoS ₂ â€WS ₂ Heterostructure with a Synergetic Photogenerating Mechanism. Advanced Electronic Materials, 2019, 5, 1800562.	2.6	53
28	Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Science and Applications, 2019, 8, 8.	7.7	51
29	Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107, .	1.5	49
30	Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Applied Physics Letters, 2018, 112, .	1.5	47
31	Vector Vortex Beam Emitter Embedded in a Photonic Chip. Physical Review Letters, 2020, 124, 153601.	2.9	47
32	Polarizationâ€independent blueâ€phase liquidâ€crystal gratings driven by vertical electric field. Journal of the Society for Information Display, 2012, 20, 341-346.	0.8	45
33	Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 2019, 114, .	1.5	45
34	Teflon-coated microfiber resonator with weak temperature dependence. Optics Express, 2011, 19, 22923.	1.7	44
35	An Optical Fiber Tip Micrograting Thermometer. IEEE Photonics Journal, 2011, 3, 810-814.	1.0	43
36	Beam shaping via photopatterned liquid crystals. Liquid Crystals, 2016, 43, 2051-2061.	0.9	42

#	Article	IF	CITATIONS
37	Smectic Layer Origami via Preprogrammed Photoalignment. Advanced Materials, 2017, 29, 1606671.	11.1	42
38	Ultra-Sensitive Refractive Index Sensor With Slightly Tapered Photonic Crystal Fiber. IEEE Photonics Technology Letters, 2012, 24, 1771-1774.	1.3	41
39	Approaching Quantum-Limited Metrology with Imperfect Detectors by Using Weak-Value Amplification. Physical Review Letters, 2020, 125, 080501.	2.9	41
40	Creating Composite Vortex Beams with a Single Geometric Metasurface. Advanced Materials, 2022, 34, e2109714.	11.1	40
41	Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS Nano, 2019, 13, 13709-13715.	7.3	39
42	Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates. Optics Letters, 2015, 40, 3576.	1.7	37
43	Miniature optical fiber current sensor based on a graphene membrane. Laser and Photonics Reviews, 2015, 9, 517-522.	4.4	34
44	Selfâ€Assembled Wavy Optical Microfiber for Stretchable Wearable Sensor. Advanced Optical Materials, 2021, 9, 2002206.	3.6	34
45	Miniaturized Metal-Dielectric-Hybrid Fiber Tip Grating for Refractive Index Sensing. IEEE Photonics Technology Letters, 2011, 23, 1712-1714.	1.3	32
46	Perfect Higher-Order Poincar \tilde{A} \otimes Sphere Beams from Digitalized Geometric Phases. Physical Review Applied, 2018, 10, .	1.5	31
47	Planar Terahertz Photonics Mediated by Liquid Crystal Polymers. Advanced Optical Materials, 2020, 8, 1902124.	3.6	31
48	A Compact Sagnac Loop Based on a Microfiber Coupler for Twist Sensing. IEEE Photonics Technology Letters, 2015, 27, 2579-2582.	1.3	30
49	Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler. Optics Express, 2015, 23, 9407.	1.7	30
50	Lightâ€Activated Liquid Crystalline Hierarchical Architecture Toward Photonics. Advanced Optical Materials, 2019, 7, 1900393.	3.6	29
51	Metallic Grating on a D-Shaped Fiber for Refractive Index Sensing. IEEE Photonics Journal, 2013, 5, 4800706-4800706.	1.0	28
52	Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Advances, 2016, 6, .	0.6	28
53	Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light: Science and Applications, 2022, 11, 135.	7.7	28
54	An All-Fiber Reflective Hydrogen Sensor Based on a Photonic Crystal Fiber In-Line Interferometer. IEEE Sensors Journal, 2014, 14, 1133-1136.	2.4	26

#	Article	IF	CITATIONS
55	Ethanol Gas Sensor Based on a Hybrid Polymethyl Methacrylate–Silica Microfiber Coupler. Journal of Lightwave Technology, 2018, 36, 2031-2036.	2.7	26
56	Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Applied Physics Letters, $2021, 118, \ldots$	1.5	26
57	Highly Birefringent Slot-Microfiber. IEEE Photonics Technology Letters, 2011, 23, 1034-1036.	1.3	23
58	Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale, 2017, 9, 3424-3428.	2.8	22
59	Light-Driven Rotation and Pitch Tuning of Self-Organized Cholesteric Gratings Formed in a Semi-Free Film. Polymers, 2017, 9, 295.	2.0	22
60	Simultaneous Realization of Dynamic and Hybrid Multiplexed Holography via Lightâ€Activated Chiral Superstructures. Laser and Photonics Reviews, 2022, 16, .	4.4	22
61	Programmable self-propelling actuators enabled by a dynamic helical medium. Science Advances, 2021, 7, .	4.7	21
62	Generation of NOON State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 225-230.	1.9	20
63	Magnetic Field Sensing Based on Multimode Fiber Specklegrams. Journal of Lightwave Technology, 2021, 39, 3614-3619.	2.7	20
64	Photonic Entanglement Based on Nonlinear Metamaterials. Laser and Photonics Reviews, 2020, 14, 1900146.	4.4	19
65	Dispersion Study of Optical Nanowire Microcoil Resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1102-1106.	1.9	18
66	Spinâ€Decoupled Transflective Spatial Light Modulations Enabled by a Piecewiseâ€Twisted Anisotropic Monolayer. Advanced Science, 2022, 9, .	5 . 6	17
67	Multifunctional optical nanofiber polarization devices with 3D geometry. Optics Express, 2014, 22, 17890.	1.7	16
68	Mechanical Modulation of a Hybrid Graphene–Microfiber Structure. Advanced Optical Materials, 2016, 4, 853-857.	3. 6	16
69	Generation of strong cylindrical vector pulses via stimulated Brillouin amplification. Applied Physics Letters, 2017, 110, .	1.5	16
70	Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors. Crystals, 2017, 7, 314.	1.0	16
71	Reversible On–Off of Chirality and Anisotropy in Patterned Coexistence of Achiralâ€Anisotropic and Chiralâ€Isotropic Soft Materials. Advanced Optical Materials, 2020, 8, 2000155.	3.6	16
72	Switchable Secondâ∈Harmonic Generation of Airy Beam and Airy Vortex Beam. Advanced Optical Materials, 2021, 9, 2001776.	3.6	15

#	Article	IF	CITATIONS
73	Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications. Optics Express, 2017, 25, 4326.	1.7	14
74	Fiber-Optic Point-Based Sensor Using Specklegram Measurement. Sensors, 2017, 17, 2429.	2.1	14
75	Smectic Defect Engineering Enabled by Programmable Photoalignment. Advanced Optical Materials, 2020, 8, 2000593.	3.6	14
76	Lowâ€temperatureâ€applicable polymerâ€stabilized blueâ€phase liquid crystal and its Kerr effect. Journal of the Society for Information Display, 2012, 20, 326-332.	0.8	13
77	Tailoring entanglement through domain engineering in a lithium niobate waveguide. Scientific Reports, 2014, 4, 4812.	1.6	13
78	Liquidâ€Crystalâ€Mediated Active Waveguides toward Programmable Integrated Optics. Advanced Optical Materials, 2020, 8, 1902033.	3.6	12
79	Dynamically Selective and Simultaneous Detection of Spin and Orbital Angular Momenta of Light with Thermoresponsive Self-Assembled Chiral Superstructures. ACS Photonics, 2022, 9, 1050-1057.	3.2	12
80	3D Engineering of Orbital Angular Momentum Beams via Liquidâ€Crystal Geometric Phase. Laser and Photonics Reviews, 2022, 16, .	4.4	12
81	Spin-controlled massive channels of hybrid-order Poincar $\tilde{\mathbb{Q}}$ sphere beams. Applied Physics Letters, 2020, 117, .	1.5	11
82	Visible and Online Detection of Nearâ€Infrared Optical Vortices via Nonlinear Photonic Crystals. Advanced Optical Materials, 2022, 10, 2101098.	3.6	11
83	A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring. Sensors, 2020, 20, 174.	2.1	10
84	Surface Plasmon Interferometer Based on Wedge Metal Waveguide and Its Sensing Applications. IEEE Photonics Journal, 2012, 4, 291-299.	1.0	9
85	Manipulation of Nonlinear Optical Properties of Graphene Bonded Fiber Devices by Thermally Engineering Fermi–Dirac Distribution. Advanced Optical Materials, 2017, 5, 1700630.	3.6	9
86	A Heterodyne Optical Fiber Current Sensor Based on a Nanowire-Grid In-Line Polarizer. IEEE Photonics Journal, 2012, 4, 1288-1294.	1.0	8
87	Orbital angular momentum (OAM) conversion and multicasting using N-core supermode fiber. Scientific Reports, 2017, 7, 1062.	1.6	8
88	Quantum entanglement based on surface phonon polaritons in condensed matter systems. AIP Advances, 2013, 3, .	0.6	7
89	Tailoring the photon spin via light–matter interaction in liquid-crystal-based twisting structures. Npj Quantum Materials, 2017, 2, .	1.8	7
90	Optical field control via liquid crystal photoalignment. Molecular Crystals and Liquid Crystals, 2017, 644, 3-11.	0.4	6

#	Article	IF	CITATIONS
91	Generation of second-harmonic Ince-Gaussian beams. Applied Physics Letters, 2018, 113, .	1.5	6
92	Measurement of Surface Plasmon Polariton Enhanced Goos–Hanchen Shift Based on Grating and Liquid Crystal Technologies. IEEE Photonics Technology Letters, 2011, 23, 1829-1831.	1.3	5
93	Quasi-Phase-Matching Method Based on Coupling Compensation for Surface Second-Harmonic Generation in Optical Fiber Nanowire Coupler. ACS Photonics, 2018, 5, 3916-3922.	3.2	5
94	Nonlinear Wavy Metasurfaces with Topological Defects for Manipulating Orbital Angular Momentum States. ACS Photonics, 2021, 8, 1896-1902.	3.2	4
95	Lead silicate fiber-based, refractive index-independent temperature sensor. Journal of Modern Optics, 2013, 60, 851-853.	0.6	3
96	Synthesis of single-crystal low-loss LiB3O5 nanowire and its optical properties. Scientific Reports, 2016, 6, 39389.	1.6	3
97	A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	3
98	Photon-phonon Interaction in a Microfiber Induced by Optical and Electrostrictive Forces. Scientific Reports, 2017, 7, 41849.	1.6	3
99	Heterostructures: Broadband Optical-Fiber-Compatible Photodetector Based on a Graphene-MoS2 -WS2 Heterostructure with a Synergetic Photogenerating Mechanism (Adv. Electron. Mater. 1/2019). Advanced Electronic Materials, 2019, 5, 1970005.	2.6	3
100	Photoâ€Actuated Chiral Smectic Superstructures. Advanced Optical Materials, 2022, 10, .	3.6	3
101	34.4: <i>Invited Paper</i> : THz Devices based on High Birefringence Liquid Crystals. Digest of Technical Papers SID International Symposium, 2014, 45, 491-494.	0.1	2
102	A Liquid Crystal Tunable Wavelength-Interleaved Isolator With Flat Spectral Response. Journal of Lightwave Technology, 2010, 28, 2890-2896.	2.7	1
103	Teflon-functionalized microfiber coupler with a good thermal stability. , 2017, , .		1
104	Photoresponsive Materials: Photoprogrammable Mesogenic Soft Helical Architectures: A Promising Avenue toward Future Chiroâ€Optics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070305.	11.1	1
105	Selfâ€Assembled Wavy Optical Microfiber for Stretchable Wearable Sensor (Advanced Optical Materials) Tj ETQq1	1.0.7843	14 rgBT /
106	Fiber tip high temperature sensor. , 2010, , .		0
107	A microfiber-based highly birefringent device. , 2012, , .		O
108	Optical frequency comb generation by cascaded second-order nonlinear effect in a quasi-phase matched micro-ring resonator. , 2012 , , .		0

#	Article	IF	CITATIONS
109	Miniaturized stereo fiber devices based on the wrapon-a-rod technology. , 2015, , .		O
110	A novel mode-locked fiber laser based on graphene with microvoid. , 2016, , .		0
111	A high-sensitivity microfluidic flowmeter based on microfiber coupler. , 2016, , .		0
112	Dual-valley transmission spectrum based on periodically poled lithium niobate with a structure defect. , 2016 , , .		0
113	Superstructures: Smectic Layer Origami via Preprogrammed Photoalignment (Adv. Mater. 15/2017). Advanced Materials, 2017, 29, .	11.1	0
114	Adaptive Materials: Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage (Adv.) Tj ETQq0 0 0 rg	gB T1/.0 verl	octa 10 Tf 50
115	Single Nanowire Integrated Microfiber Devices. Results in Optics, 2021, , 100199.	0.9	0
116	Visible and Online Detection of Nearâ€Infrared Optical Vortices via Nonlinear Photonic Crystals (Advanced Optical Materials 1/2022). Advanced Optical Materials, 2022, 10, .	3.6	0