James W Putney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4013821/publications.pdf

Version: 2024-02-01

240 papers

26,069 citations

82 h-index 157

247 all docs

247 docs citations

times ranked

247

10888 citing authors

g-index

#	Article	IF	Citations
1	Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26822-26832.	3.3	41
2	A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. Nature Communications, 2019, 10, 1971.	5.8	73
3	Store-operated Ca2+ entry and Ca2+ responses to hypothalamic releasing hormones in anterior pituitary cells from Orailâ^'/â^' and heptaTRPC knockout mice. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1124-1136.	1.9	13
4	Forms and functions of store-operated calcium entry mediators, STIM and Orai. Advances in Biological Regulation, 2018, 68, 88-96.	1.4	57
5	Orail Plays a Crucial Role in Central Sensitization by Modulating Neuronal Excitability. Journal of Neuroscience, 2018, 38, 887-900.	1.7	36
6	A personal journey. Cell Calcium, 2018, 72, 127-131.	1.1	1
7	ORAI Calcium Channels. Physiology, 2017, 32, 332-342.	1.6	68
8	The functions of store-operated calcium channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 900-906.	1.9	92
9	Introduction. Advances in Experimental Medicine and Biology, 2017, 993, 3-13.	0.8	2
10	Cytokine signaling through <i>Drosophila</i> Mthl10 ties lifespan to environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13786-13791.	3.3	36
11	Store-Operated Calcium Entry: An Historical Overview. Advances in Experimental Medicine and Biology, 2017, 981, 205-214.	0.8	26
12	Pharmacology of Store-Operated Calcium Entry Channels. , 2017, , 311-324.		8
13	Low-Voltage-Activated Ca V 3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity, 2016, 44, 782-794.	6.6	35
14	Male infertility in mice lacking the store-operated Ca2+ channel Orai1. Cell Calcium, 2016, 59, 189-197.	1.1	21
15	TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation. Biochemical Journal, 2016, 473, 201-210.	1.7	6
16	Retrograde regulation of STIM1-Orail interaction and store-operated Ca2+ entry by calsequestrin. Scientific Reports, 2015, 5, 11349.	1.6	42
17	Multiple types of calcium channels arising from alternative translation initiation of the <i>Orai1</i> message. Science Signaling, 2015, 8, ra74.	1.6	94

#	Article	IF	CITATIONS
19	Essential role of Orai1 store-operated calcium channels in lactation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5827-5832.	3.3	82
20	Role of <i>Orai1</i> and storeâ€operated calcium entry in mouse lacrimal gland signalling and function. Journal of Physiology, 2014, 592, 927-939.	1.3	29
21	Calcium signaling in lacrimal glands. Cell Calcium, 2014, 55, 290-296.	1.1	19
22	Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene, 2014, 33, 2307-2316.	2.6	290
23	Role of STIM1- and Orai1-mediated Ca2+ entry in Ca2+-induced epidermal keratinocyte differentiation. Journal of Cell Science, 2013, 126, 605-612.	1.2	43
24	Alternative Forms of the Store-Operated Calcium Entry Mediators, STIM1 and Orai1. Current Topics in Membranes, 2013, 71, 109-123.	0.5	26
25	Calcium Signaling: Septins Organize the SOC Channel. Current Biology, 2013, 23, R684-R685.	1.8	1
26	Orailâ€mediated calcium entry plays a critical role in osteoclast differentiation and function by regulating activation of the transcription factor NFATc1. FASEB Journal, 2012, 26, 1484-1492.	0.2	63
27	Alternative translation initiation gives rise to two isoforms of orail with distinct plasma membrane mobilities. Journal of Cell Science, 2012, 125, 4354-61.	1.2	85
28	Regulation of store-operated calcium entry during cell division. Biochemical Society Transactions, 2012, 40, 119-123.	1.6	24
29	Phospholipase C signaling and calcium influx. Advances in Biological Regulation, 2012, 52, 152-164.	1.4	137
30	Phosphoregulation of STIM1 Leads to Exclusion of the Endoplasmic Reticulum from the Mitotic Spindle. Current Biology, 2012, 22, 1487-1493.	1.8	89
31	Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium, 2012, 52, 488-500.	1.1	39
32	Calcium Signaling: Deciphering the Calcium–NFAT Pathway. Current Biology, 2012, 22, R87-R89.	1.8	28
33	Calcium Oscillations. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004226-a004226.	2.3	231
34	Origins of the concept of store-operated calcium entry. Frontiers in Bioscience - Scholar, 2011, S3, 980-984.	0.8	28
35	Calcium signaling in osteoclasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 979-983.	1.9	98
36	The Physiological Function of Store-operated Calcium Entry. Neurochemical Research, 2011, 36, 1157-1165.	1.6	87

#	Article	IF	Citations
37	Origins of the concept of store-operated calcium entry. Frontiers in Bioscience - Scholar, 2011, S3, 980.	0.8	37
38	Activation and regulation of storeâ€operated calcium entry. Journal of Cellular and Molecular Medicine, 2010, 14, 2337-2349.	1.6	236
39	Store-Operated Calcium Channels. , 2010, , 911-914.		2
40	Ca2+ influx and protein scaffolding via TRPC3 sustain PKC \hat{l}^2 and ERK activation in B cells. Journal of Cell Science, 2010, 123, 927-938.	1.2	60
41	Pharmacology of Store-operated Calcium Channels. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 209-218.	3.4	120
42	Store operated calcium entry in NIH-3T3 cells. Journal of Medical Investigation, 2009, 56, 381-382.	0.2	0
43	STIM1 Is a Calcium Sensor Specialized for Digital Signaling. Current Biology, 2009, 19, 1724-1729.	1.8	139
44	Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Archiv European Journal of Physiology, 2009, 457, 757-769.	1.3	105
45	TRPC channels function independently of STIM1 and Orai1. Journal of Physiology, 2009, 587, 2275-2298.	1.3	207
46	SOC: now also store-operated cyclase. Nature Cell Biology, 2009, 11, 381-382.	4.6	6
47	Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nature Cell Biology, 2009, 11, 1465-1472.	4.6	159
48	Capacitative calcium entry: from concept to molecules. Immunological Reviews, 2009, 231, 10-22.	2.8	206
49	Regulation of calcium entry in exocrine gland cells and other epithelial cells. Journal of Medical Investigation, 2009, 56, 362-367.	0.2	4
50	Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology, 2008, 48, 1273-1281.	3.6	43
51	Cytoplasmic calcium oscillations and storeâ€operated calcium influx. Journal of Physiology, 2008, 586, 3055-3059.	1.3	85
52	Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release–activated calcium channels. Nature Immunology, 2008, 9, 89-96.	7.0	372
53	Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium, 2008, 43, 506-514.	1.1	114
54	STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology, 2008, 18, 177-182.	1.8	378

#	Article	IF	Citations
55	Methods for studying store-operated calcium entry. Methods, 2008, 46, 204-212.	1.9	180
56	Complex Actions of 2-Aminoethyldiphenyl Borate on Store-operated Calcium Entry. Journal of Biological Chemistry, 2008, 283, 19265-19273.	1.6	230
57	Ca2+-store-dependent and -independent reversal of Stim1 localization and function. Journal of Cell Science, 2008, 121, 762-772.	1.2	162
58	New molecular players in capacitative Ca2+ entry. Journal of Cell Science, 2007, 120, 1959-1965.	1.2	142
59	Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. Journal of Cell Science, 2007, 120, 3762-3771.	1.2	120
60	Calcium Inhibition and Calcium Potentiation of Orai1, Orai2, and Orai3 Calcium Release-activated Calcium Channels*. Journal of Biological Chemistry, 2007, 282, 17548-17556.	1.6	220
61	Ca2+ mobilization through dorsal root ganglion Ca2+-sensing receptor stably expressed in HEK293 cells. American Journal of Physiology - Cell Physiology, 2007, 292, C1895-C1905.	2.1	19
62	Role of the store-operated calcium entry proteins Stim1 and Orai1 in muscarinic cholinergic receptor-stimulated calcium oscillations in human embryonic kidney cells. Journal of Physiology, 2007, 579, 679-689.	1.3	95
63	Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on) Tj ETQq $1\ 1$	0.784314 1.1	rgBT/Overlo
64	Phospholipase C-Coupled Receptors and Activation of TRPC Channels. Handbook of Experimental Pharmacology, 2007, , 593-614.	0.9	87
65	Inositol lipids and TRPC channel activation. Biochemical Society Symposia, 2007, 74, 37.	2.7	18
66	Inositol lipids and TRPC channel activation. Biochemical Society Symposia, 2007, 74, 37-45.	2.7	14
67	Calcium Signaling: Double Duty for Calcium at the Mitochondrial Uniporter. Current Biology, 2006, 16, R812-R815.	1.8	31
68	Emerging perspectives in store-operated Ca2+ entry: Roles of Orai, Stim and TRP. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1147-1160.	1.9	194
69	Large Store-operated Calcium Selective Currents Due to Co-expression of Orai1 or Orai2 with the Intracellular Calcium Sensor, Stim1. Journal of Biological Chemistry, 2006, 281, 24979-24990.	1.6	484
70	Dissociation of Regulated Trafficking of TRPC3 Channels to the Plasma Membrane from Their Activation by Phospholipase C. Journal of Biological Chemistry, 2006, 281, 11712-11720.	1.6	59
71	Native TRPC7 Channel Activation by an Inositol Trisphosphate Receptor-dependent Mechanism. Journal of Biological Chemistry, 2006, 281, 25250-25258.	1.6	40
72	Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB Journal, 2006, 20, 503-505.	0.2	38

#	Article	IF	CITATIONS
73	Multiple Mechanisms of TRPC Activation. Frontiers in Neuroscience, 2006, , 31-43.	0.0	О
74	Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. Journal of Physiology, 2005, 562, 697-706.	1.3	110
75	Physiological mechanisms of TRPC activation. Pflugers Archiv European Journal of Physiology, 2005, 451, 29-34.	1.3	98
76	Mechanism of Inhibition of TRPC Cation Channels by 2-Aminoethoxydiphenylborane. Molecular Pharmacology, 2005, 68, 758-762.	1.0	113
77	The Role of Canonical Transient Receptor Potential 7 in B-cell Receptor-activated Channels. Journal of Biological Chemistry, 2005, 280, 35346-35351.	1.6	55
78	Ca2+-Calmodulin-dependent Facilitation and Ca2+ Inactivation of Ca2+ Release-activated Ca2+ Channels. Journal of Biological Chemistry, 2005, 280, 8776-8783.	1.6	36
79	Negative Regulation of TRPC3 Channels by Protein Kinase C-Mediated Phosphorylation of Serine 712. Molecular Pharmacology, 2005, 67, 558-563.	1.0	121
80	Capacitative calcium entry. Journal of Cell Biology, 2005, 169, 381-382.	2.3	159
81	Store-Operated Calcium Channels. Physiological Reviews, 2005, 85, 757-810.	13.1	1,907
82	Fluorescent Indicators – Facts and Artifacts. , 2005, , 51-84.		1
82	Fluorescent Indicators – Facts and Artifacts. , 2005, , 51-84. Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37.	1.6	1
	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling,	1.6	
83	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37. Obligatory Role of Src Kinase in the Signaling Mechanism for TRPC3 Cation Channels. Journal of		17
83	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37. Obligatory Role of Src Kinase in the Signaling Mechanism for TRPC3 Cation Channels. Journal of Biological Chemistry, 2004, 279, 40521-40528. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated	1.6	17
83 84 85	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37. Obligatory Role of Src Kinase in the Signaling Mechanism for TRPC3 Cation Channels. Journal of Biological Chemistry, 2004, 279, 40521-40528. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1709-C1716.	1.6 2.1	17 132 77
83 84 85 86	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37. Obligatory Role of Src Kinase in the Signaling Mechanism for TRPC3 Cation Channels. Journal of Biological Chemistry, 2004, 279, 40521-40528. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1709-C1716. The enigmatic TRPCs: multifunctional cation channels. Trends in Cell Biology, 2004, 14, 282-286.	1.6 2.1 3.6	17 132 77 97
83 84 85 86	Store-Operated Calcium Channels: How Do We Measure Them, and Why Do We Care?. Science Signaling, 2004, 2004, pe37-pe37. Obligatory Role of Src Kinase in the Signaling Mechanism for TRPC3 Cation Channels. Journal of Biological Chemistry, 2004, 279, 40521-40528. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1709-C1716. The enigmatic TRPCs: multifunctional cation channels. Trends in Cell Biology, 2004, 14, 282-286. The mammalian TRPC cation channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 21-36.	1.6 2.1 3.6	17 132 77 97 285

#	Article	IF	Citations
91	Capacitative calcium entry in the nervous system. Cell Calcium, 2003, 34, 339-344.	1.1	146
92	A Calmodulin/Inositol 1,4,5-Trisphosphate (IP3) Receptor-binding Region Targets TRPC3 to the Plasma Membrane in a Calmodulin/IP3 Receptor-independent Process. Journal of Biological Chemistry, 2003, 278, 25758-25765.	1.6	77
93	Signaling Mechanism for Receptor-activated Canonical Transient Receptor Potential 3 (TRPC3) Channels. Journal of Biological Chemistry, 2003, 278, 16244-16252.	1.6	146
94	Expression Level of the Canonical Transient Receptor Potential 3 (TRPC3) Channel Determines Its Mechanism of Activation. Journal of Biological Chemistry, 2003, 278, 21649-21654.	1.6	140
95	2-Aminoethoxydiphenyl Borane Activates a Novel Calcium-Permeable Cation Channel. Molecular Pharmacology, 2003, 63, 1304-1311.	1.0	46
96	Store-operated Ca2+ Channels. , 2003, , 31-33.		O
97	Inositol Phosphate Signaling. , 2003, , 310-315.		О
98	Comparison of Human TRPC3 Channels in Receptor-activated and Store-operated Modes. Journal of Biological Chemistry, 2002, 277, 21617-21623.	1.6	221
99	PLC-Î ³ : an old player has a new role. Nature Cell Biology, 2002, 4, E280-E281.	4.6	16
100	An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. EMBO Journal, 2002, 21, 4531-4538.	3.5	59
101	Channelling calcium. Nature, 2001, 410, 648-649.	13.7	34
102	Role of the Phospholipase C-Inositol 1,4,5-Trisphosphate Pathway in Calcium Release-activated Calcium Current and Capacitative Calcium Entry. Journal of Biological Chemistry, 2001, 276, 15945-15952.	1.6	212
103	Stable Activation of Single Ca2+ Release-activated Ca2+ Channels in Divalent Cation-free Solutions. Journal of Biological Chemistry, 2001, 276, 1063-1070.	1.6	101
104	Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11777-11782.	3.3	168
105	Mutual Antagonism of Calcium Entry by Capacitative and Arachidonic Acid-mediated Calcium Entry Pathways. Journal of Biological Chemistry, 2001, 276, 20186-20189.	1.6	62
106	Signaling Pathways Underlying Muscarinic Receptor-induced [Ca2+] Oscillations in HEK293 Cells. Journal of Biological Chemistry, 2001, 276, 5613-5621.	1.6	127
107	Mechanisms of capacitative calcium entry. Journal of Cell Science, 2001, 114, 2223-2229.	1.2	483
108	Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochemical Journal, 2000, 351, 735-746.	1.7	112

#	Article	IF	CITATIONS
109	Effects of elevated cytoplasmic calcium and protein kinase C on endoplasmic reticulum structure and function in HEK293 cells. Cell Calcium, 2000, 27, 175-185.	1.1	72
110	A Selective Requirement for Elevated Calcium in DNA Degradation, but Not Early Events in Anti-Fas-induced Apoptosis. Journal of Biological Chemistry, 2000, 275, 30586-30596.	1.6	57
111	Presenilins, Alzheimer's Disease, and Capacitative Calcium Entry. Neuron, 2000, 27, 411-412.	3.8	26
112	Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochemical Journal, 2000, 351, 735.	1.7	53
113	Role of the Inositol 1,4,5-Trisphosphate Receptor in Ca2+ Feedback Inhibition of Calcium Release-activated Calcium Current (I crac). Journal of Biological Chemistry, 1999, 274, 32881-32888.	1.6	66
114	Adenophostin A Induces Spatially Restricted Calcium Signaling in Xenopus laevis Oocytes. Journal of Biological Chemistry, 1999, 274, 20643-20649.	1.6	24
115	Capacitative calcium entry channels. BioEssays, 1999, 21, 38-46.	1.2	357
116	Intimate Plasma Membrane–ER Interactions Underlie Capacitative Calcium Entry: "Kissin' Cousins― Cell, 1999, 99, 5-8.	13.5	137
117	Calcium Signaling: Up, Down, Up, Down What's the Point?. Science, 1998, 279, 191-192.	6.0	99
118	Relationship between Intracellular Calcium Store Depletion and Calcium Release-activated Calcium Current in a Mast Cell Line (RBL-1). Journal of Biological Chemistry, 1998, 273, 19554-19559.	1.6	71
119	Effect of Adenophostin A on Ca2+ Entry and Calcium Release-activated Calcium Current (I crac) in Rat Basophilic Leukemia Cells. Journal of Biological Chemistry, 1998, 273, 31815-31821.	1.6	28
120	Calcium Signalling in Lacrimal Acinar Cells. Advances in Experimental Medicine and Biology, 1998, 438, 123-128.	0.8	11
121	Role of the Cytoskeleton in Calcium Signaling in NIH 3T3 Cells. Journal of Biological Chemistry, 1997, 272, 26555-26561.	1.6	168
122	Effect of cytoplasmic Ca2+ on (1,4,S)IP3 formation in vasopressinmactivated hepatocytes. Cell Calcium, 1997, 21, 253-256.	1.1	17
123	Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium, 1997, 21, 257-261.	1.1	135
124	Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , .	0.2	138
125	General Aspects of Calcium Signaling. Molecular Biology Intelligence Unit, 1997, , 1-52.	0.2	5
126	Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , 53-75.	0.2	2

#	Article	lF	CITATIONS
127	The Signal for Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , 77-121.	0.2	O
128	Physiological, Pharmacological and Pathological Aspects of Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , 179-205.	0.2	0
129	Electrophysiology and Regulation of Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , 123-152.	0.2	0
130	Spatial and temporal aspects of cellular calcium signaling. FASEB Journal, 1996, 10, 1505-1517.	0.2	484
131	cGMP is not required for capacitative Ca2+ entry in Jurkat T-lymphocytes. Cell Calcium, 1996, 19, 351-354.	1.1	16
132	Effect of Inositol 1,3,4,5-Tetrakisphosphate on Inositol Trisphosphate-activated Ca2â³ Signaling in Mouse Lacrimal Acinar Cells. Journal of Biological Chemistry, 1996, 271, 6766-6770.	1.6	52
133	Cell Type-specific Modes of Feedback Regulation of Capacitative Calcium Entry. Journal of Biological Chemistry, 1996, 271, 14807-14813.	1.6	58
134	Differential Effects of Protein Kinase C Activation on Calcium Storage and Capacitative Calcium Entry in NIH 3T3 Cells. Journal of Biological Chemistry, 1996, 271, 21522-21528.	1.6	60
135	Role of cyclic GMP in the control of capacitative Ca2+ entry in rat pancreatic acinar cells. Biochemical Journal, 1995, 311, 649-656.	1.7	35
136	Calcium entry signal?. Nature, 1995, 373, 481-482.	13.7	47
137	The Ca2+-mobilizing Actions of a Jurkat Cell Extract on Mammalian Cells and Xenopus laevis Oocytes. Journal of Biological Chemistry, 1995, 270, 8050-8055.	1.6	39
138	Calcium mobilization by inositol phosphates and other intracellular messengers. Trends in Endocrinology and Metabolism, 1994, 5, 256-260.	3.1	28
139	Receptors and the Inositol Phosphate-Calcium Signaling System. Receptors, 1994, , 257-283.	0.2	8
140	The Inositol Phosphate-Calcium Signalling System in Lacrimal Gland Cells. Advances in Experimental Medicine and Biology, 1994, 350, 115-119.	0.8	4
141	Inositol phosphates and cell signaling: new views of InsP5 and InsP6. Trends in Biochemical Sciences, 1993, 18, 53-56.	3.7	136
142	The signal for capacitative calcium entry. Cell, 1993, 75, 199-201.	13.5	429
143	Excitement about calcium signaling in inexcitable cells. Science, 1993, 262, 676-678.	6.0	180
144	The Inositol Phosphate-Calcium Signaling System in Nonexcitable Cells. Endocrine Reviews, 1993, 14, 610-631.	8.9	497

#	Article	IF	Citations
145	RECEPTOR-REGULATED CALCIUM ENTRY., 1993,, 255-263.		0
146	Inositol polyphosphates and calcium signaling. Molecular and Cellular Neurosciences, 1992, 3, 1-10.	1.0	18
147	Mechanisms of activated Ca2+ entry in the rat pancreatoma cell line, AR4-2J. Cell Calcium, 1992, 13, 49-58.	1.1	27
148	The identity of the calcium-storing, inositol 1,4,5 \hat{a} e"trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum \hat{a} e $ $ or both?. Trends in Neurosciences, 1991, 14, 310-314.	4.2	76
149	Role of Inositol Phosphates in the Actions of Substance P on NK1Receptors in Exocrine Gl and Cells. Annals of the New York Academy of Sciences, 1991, 632, 94-102.	1.8	16
150	The Capacitative Model for Receptor-Activated Calcium Entry. Advances in Pharmacology, 1991, 22, 251-269.	1.2	59
151	Relationship between the calcium-mobilizing action of inositol 1,4,5-trisphosphate in permeable AR4-2J cells and the estimated levels of inositol 1,4,5-trisphosphate in intact AR4-2J cells. Biochemical Journal, 1991, 273, 541-546.	1.7	41
152	Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments. Biochemical Journal, 1991, 274, 643-650.	1.7	155
153	Inositol 1,4,5-trisphosphate 3-kinase activity in high-speed supernatants from rat pancreatoma cells, AR4-2J. Biochemical Journal, 1991, 274, 622-623.	1.7	3
154	Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature, 1991, 352, 162-165.	13.7	192
155	Diethylstilbestrol Stimulates Persistent Phosphatidylinositol Lipid Turnover by an Estrogen Receptor-Mediated Mechanism in Immature Mouse Uterus. Endocrinology, 1991, 129, 2423-2430.	1.4	24
156	Identification in extracts from AR4-2J cells of inositol 1,4,5-trisphosphate by its susceptibility to inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase. Biochemical Journal, 1990, 269, 195-200.	1.7	17
157	Capacitative calcium entry revisited. Cell Calcium, 1990, 11, 611-624.	1.1	1,473
158	Calcium efflux across the plasma membrane of rat parotid acinar cells is unaffected by receptor activation or by the microsomal calcium ATPase inhibitor, thapsigargin. Cell Calcium, 1990, 11, 11-17.	1.1	48
159	Inositol phosphate formation and its relationship to calcium signaling Environmental Health Perspectives, 1990, 84, 141-147.	2.8	31
160	Inositol Phosphate Metabolism and Signal Transduction. The American Review of Respiratory Disease, 1990, 141, S115-S118.	2.9	12
161	Receptor-regulated calcium entry. , 1990, 48, 427-434.		61
162	The Integration of Receptor-Regulated Intracellular Calcium Release and Calcium Entry across the Plasma Membrane. Current Topics in Cellular Regulation, 1990, 31, 111-127.	9.6	16

#	Article	IF	CITATIONS
163	How do inositol phosphates regulate calcium signaling?. FASEB Journal, 1989, 3, 1899-1905.	0.2	173
164	Does \hat{I}^2 -adrenoceptor activation stimulate Ca2+ mobilization and inositol trisphosphate formation in parotid acinar cells? Cell Calcium, 1989, 10, 519-525.	1.1	30
165	Capacitative calcium entry in parotid acinar cells. Biochemical Journal, 1989, 258, 409-412.	1.7	223
166	Inositol Phosphate Metabolism and Cellular Signal Transduction. Advances in Experimental Medicine and Biology, 1989, 255, 37-48.	0.8	4
167	Persistent inhibition by inositol 1,4,5-trisphosphate of oxalate-dependent 45calcium accumulation in permeable guinea-pig hepatocytes. Cell Calcium, 1988, 9, 9-16.	1.1	22
168	Two modes of regulation of the phospholipase C-linked substance-P receptor in rat parotid acinar cells. Biochemical Journal, 1988, 253, 459-466.	1.7	43
169	Protein kinase C-dependent and -independent mechanisms regulating the parotid substance P receptor as revealed by differential effects of protein kinase C inhibitors. Biochemical Journal, 1988, 256, 677-680.	1.7	21
170	Regulation of Inositol Trisphosphate Formation and Action. , 1988, , 287-302.		0
171	Mobilization of Intracellular Calcium by Methacholine and Inositol 1,4,5-Trisphosphate in Rat Parotid Acinar Cells. Journal of Dental Research, 1987, 66, 547-551.	2.5	25
172	Metabolism of inositol 1,4,5-trisphosphate in guinea-pig hepatocytes. Biochemical Journal, 1987, 242, 797-802.	1.7	40
173	Homologous desensitization of substance-P-induced inositol polyphosphate formation in rat parotid acinar cells. Biochemical Journal, 1987, 244, 647-653.	1.7	89
174	Calcium-mobilizing receptors. Trends in Pharmacological Sciences, 1987, 8, 481-486.	4.0	107
175	A Role for G Proteins in the Action of Ca2+-Mobilizing Hormones. Annals of the New York Academy of Sciences, 1987, 494, 162-164.	1.8	0
176	Phosphoinositides and alpha-1 Adrenergic Receptors. Receptors, 1987, , 189-208.	0.2	4
177	Phosphoinositides and Calcium Signaling. , 1987, , 1-38.		3
178	Modification of Membrane Function by Drugs. , 1987, , 369-383.		0
179	A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland. Biochemical and Biophysical Research Communications, 1986, 136, 362-368.	1.0	98
180	$\hat{l}\pm 1$ -Adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Letters, 1986, 195, 319-322.	1.3	47

#	Article	IF	Citations
181	ATP-induced calcium mobilization and inositol 1,4,5-trisphosphate formation in H-35 hepatoma cells. FEBS Letters, 1986, 204, 189-192.	1.3	45
182	Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochemical Journal, 1986, 236, 337-343.	1.7	181
183	Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas. Biochemical Journal, 1986, 238, 765-772.	1.7	51
184	Isomers of inositol trisphosphate in exocrine pancreas. Biochemical Journal, 1986, 238, 825-829.	1.7	59
185	Effects of protein kinase C and calcium on receptor-regulated formation of isomers of inositol trisphosphate. Biochemical Society Transactions, 1986, 14, 1018-1018.	1.6	0
186	A G protein couples receptors to phospholipase C in exocrine pancreas and parotid glands. Biochemical Society Transactions, 1986, 14, 1017-1017.	1.6	1
187	A saturable receptor for 32P-inositol-l,4,5-trisphosphate in hepatocytes and neutrophils. Nature, 1986, 319, 514-516.	13.7	306
188	A model for receptor-regulated calcium entry. Cell Calcium, 1986, 7, 1-12.	1.1	2,462
189	Cytosolic calcium during contraction of isolated mammalian gastric muscle cells. Science, 1986, 232, 1143-1145.	6.0	53
190	Modification of Membrane Function by Drugs. , 1986, , 369-383.		1
191	Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells. Biochemical Journal, 1985, 225, 263-266.	1.7	82
192	Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. Biochemical Journal, 1985, 232, 237-243.	1.7	248
193	Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochemical Journal, 1985, 232, 435-438.	1.7	68
194	Alphaâ€adrenergic stimulation of potassium efflux in guineaâ€pig hepatocytes may involve calcium influx and calcium release Journal of Physiology, 1984, 346, 395-407.	1.3	46
195	The second messenger linking receptor activation to internal Ca release in liver. Nature, 1984, 309, 63-66.	13.7	580
196	Inositol 1,4,5-trisphosphate may be a signal for f-Met-Leu-Phe-induced intracellular Ca mobilisation in human leucocytes (HL-60 cells). FEBS Letters, 1984, 176, 193-196.	1.3	58
197	Metabolism of inositol phosphates in parotid cells: Implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate. Life Sciences, 1984, 34, 1347-1355.	2.0	90
198	Receptor-mediated metabolism of the phosphoinositides and phosphatidic acid in rat lacrimal acinar cells. Biochemical Journal, 1984, 218, 187-195.	1.7	59

#	Article	IF	Citations
199	Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas. Implications for a messenger role for inositol trisphosphate. Biochemical Journal, 1984, 219, 655-659.	1.7	79
200	Secretagogue-induced phosphoinositide metabolism in human leucocytes. Biochemical Journal, 1984, 222, 307-314.	1.7	157
201	Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes. Biochemical Journal, 1984, 224, 741-746.	1.7	166
202	Activation by calcium of membrane channels for potassium in exocrine gland cells. Cell Calcium, 1983, 4, 439-449.	1.1	13
203	Stimulation of glycogenolysis in hepatocytes by angiotensin II may involve both calcium release and calcium influx. FEBS Letters, 1983, 160, 259-263.	1.3	59
204	lonic mechanisms in secretagogue-induced morphological changes in rat parotid gland Journal of Cell Biology, 1983, 97, 1119-1130.	2.3	20
205	Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas. Biochemical Journal, 1983, 212, 483-488.	3.2	123
206	Nature of the receptorâ€regulated calcium pool in the rat parotid gland Journal of Physiology, 1982, 331, 557-565.	1.3	106
207	Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells. Biochemical Journal, 1982, 206, 555-560.	1.7	181
208	Regulation of phosphatidate synthesis by secretagogues in parotid acinar cells. Biochemical Journal, 1982, 204, 587-592.	3.2	61
209	Inositol lipids and cell stimulation in mammalian salivary gland. Cell Calcium, 1982, 3, 369-383.	1.1	42
210	Net calcium fluxes in rat parotid acinar cells. Pflugers Archiv European Journal of Physiology, 1982, 392, 239-243.	1.3	81
211	Roles of Phospholipid Metabolism in Secretory Cells. , 1982, , 53-105.		17
212	Recent hypotheses regarding the phosphatidylinositol effect. Life Sciences, 1981, 29, 1183-1194.	2.0	154
213	Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1981, 296, 37-45.	2.4	84
214	The relationship of phosphatidylinositol turnover to receptors and calcium-ion channels in rat parotid acinar cells. Biochemical Journal, 1981, 194, 463-468.	3.2	60
215	RECEPTOR CONTROL OF ION FLUXES IN EXOCRINE CELLS. Biochemical Society Transactions, 1981, 9, 33P-33P.	1.6	0
216	Chapter 30 Relationship between Receptors, Calcium Channels, and Responses in Exocrine Gland Cells. Methods in Cell Biology, 1981, 23, 503-511.	0.5	5

#	Article	IF	Citations
217	Calium, prostaglandins and the phosphatidylinositol effect in exocrine gland cells. Cell Calcium, 1981, 2, 561-571.	1.1	10
218	Binding of 125lâ€physalaemin to rat parotid acinar cells Journal of Physiology, 1980, 301, 205-212.	1.3	26
219	The relationship between muscarinic receptor binding and ion movements in rat parotid cells Journal of Physiology, 1980, 299, 521-531.	1.3	47
220	Effect of carbachol on radiosodium uptake by dispersed pancreatic acinar cells. Pflugers Archiv European Journal of Physiology, 1980, 385, 131-136.	1.3	18
221	Is phosphatidic acid a calcium ionophore under neurohumoral control?. Nature, 1980, 284, 345-347.	13.7	340
222	Role of calcium in stimulation of 36Cl uptake by dispersed pancreatic acinar cells. Biochemical and Biophysical Research Communications, 1980, 95, 1461-1466.	1.0	5
223	Calcium and receptor regulation of radiosodium uptake by dispersed rat parotid acinar cells Journal of Physiology, 1979, 297, 369-377.	1.3	39
224	Effect of carbachol on ouabain-sensitive uptake of 86Rb by dispersed lacrimal gland cells. Life Sciences, 1979, 24, 1119-1123.	2.0	8
225	Stimulation of 45CA efflux from rat lacrimal gland slices by carbachol and epinephrine. Life Sciences, 1979, 25, 2211-2215.	2.0	11
226	Retention of nerve terminals in dispersed parotid acinar cells. Life Sciences, 1979, 25, 1017-1021.	2.0	9
227	Relationship between calcium release and potassium release in rat parotid gland Journal of Physiology, 1979, 291, 457-465.	1.3	33
228	On the role of cellular calcium in the response of the parotid to dibutyryl and monobutyryl cyclic AMP. Life Sciences, 1978, 22, 631-638.	2.0	14
229	Oxygen consumption in the parotid gland. Life Sciences, 1978, 22, 1731-1735.	2.0	11
230	Role of calcium in the fade of the potassium release response in the rat parotid gland Journal of Physiology, 1978, 281, 383-394.	1.3	33
231	An alphaâ€adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell Journal of Physiology, 1978, 281, 359-369.	1.3	47
232	Control of calcium channels by membrane receptors in the rat parotid gland Journal of Physiology, 1978, 279, 141-151.	1.3	68
233	The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland Journal of Physiology, 1978, 281, 371-381.	1.3	69
234	Role of Calcium in the Actions of Agents Affecting Membrane Permeability. , 1978, , 173-194.		8

#	Article	IF	CITATIONS
235	Muscarinic, alphaâ€adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland Journal of Physiology, 1977, 268, 139-149.	1.3	189
236	Control by calcium of protein discharge and membrane permeability to potassium in the rat lacrimal gland. Life Sciences, 1977, 20, 1905-1912.	2.0	33
237	alphaâ€Adrenergic, betaâ€adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro Journal of Physiology, 1976, 260, 351-370.	1.3	133
238	Trpc3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
239	Trpc7. The AFCS-nature Molecule Pages, 0, , .	0.2	0
240	Trpc6. The AFCS-nature Molecule Pages, 0, , .	0.2	0