Luis Pérez-Urrestarazu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4013546/publications.pdf

Version: 2024-02-01

42 papers

1,032 citations

18 h-index 433756 31 g-index

42 all docs 42 docs citations

42 times ranked 1121 citing authors

#	Article	IF	CITATIONS
1	Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 2015, 22, 65-85.	2.5	119
2	Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: An application in spain. Agricultural Systems, 2008, 96, 250-259.	3.2	87
3	The paradox of irrigation scheme modernization: more efficient water use linked to higher energy demand. Spanish Journal of Agricultural Research, 2011, 9, 1000.	0.3	71
4	Influence of an active living wall on indoor temperature and humidity conditions. Ecological Engineering, 2016, 90, 120-124.	1.6	70
5	Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, 2018, 165, 77-87.	1.9	66
6	Particularities of having plants at home during the confinement due to the COVID-19 pandemic. Urban Forestry and Urban Greening, 2021, 59, 126919.	2.3	57
7	Assessment of the Cooling Potential of an Indoor Living Wall using Different Substrates in a Warm Climate. Indoor and Built Environment, 2012, 21, 642-650.	1.5	54
8	The role of green roofs in climate change mitigation. A case study in Seville (Spain). Building and Environment, 2017, 123, 575-584.	3.0	52
9	A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nature Ecology and Evolution, 2021, 5, 219-230.	3.4	39
10	Wind tunnel analysis of artificial substrates used in active living walls for indoor environment conditioning in Mediterranean buildings. Building and Environment, 2012, 51, 370-378.	3.0	35
11	Modernizing Water Distribution Networks. Outlook on Agriculture, 2012, 41, 229-236.	1.8	32
12	Irrigation Systems Evaluation for Living Walls. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, .	0.6	31
13	Suitability and optimization of FAO's small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 2019, 85, 129-137.	1.4	30
14	Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy, 2020, 10, 1468.	1.3	23
15	Characterization of Pumps for Irrigation in Central California: Potential Energy Savings. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 815-822.	0.6	21
16	Media and social impact valuation of a living wall: The case study of the Sagrado Corazon hospital in Seville (Spain). Urban Forestry and Urban Greening, 2017, 24, 141-148.	2.3	19
17	Volatile organic compounds removal by means of a felt-based living wall to improve indoor air quality. Atmospheric Pollution Research, 2021, 12, 224-229.	1.8	19
18	Quality of Service in Irrigation Distribution Networks: Case of Palos de la Frontera Irrigation District (Spain). Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 755-762.	0.6	18

#	Article	IF	Citations
19	Assessment of perlite, expanded clay and pumice as substrates for living walls. Scientia Horticulturae, 2019, 254, 48-54.	1.7	17
20	Lighting systems evaluation for indoor living walls. Urban Forestry and Urban Greening, 2014, 13, 475-483.	2.3	16
21	Irrigation Distribution Networks' Vulnerability to Climate Change. Journal of Irrigation and Drainage Engineering - ASCE, 2010, 136, 486-493.	0.6	15
22	Food safety concerns in urban aquaponic production: Nitrate contents in leafy vegetables. Urban Forestry and Urban Greening, 2019, 44, 126431.	2.3	13
23	Vertical Greening Systems. , 2018, , 45-54.		11
24	Development of an automatic test bench to assess sprinkler irrigation uniformity in different wind conditions. Computers and Electronics in Agriculture, 2018, 151, 31-40.	3.7	11
25	Comparative Analysis of Horizontal and Vertical Decoupled Aquaponic Systems for Basil Production and Effect of Light Supplementation by LED. Agronomy, 2020, 10, 1414.	1.3	11
26	Assessment of different LED lighting systems for indoor living walls. Scientia Horticulturae, 2020, 272, 109522.	1.7	11
27	Susceptibility to water-borne plant diseases of hydroponic vs. aquaponics systems. Aquaculture, 2021, 544, 737093.	1.7	10
28	Water management assessment in a historic garden: the case study of the Real Alcazar (Seville, Spain). Urban Forestry and Urban Greening, 2018, 29, 192-199.	2.3	9
29	Improving the performance of felt-based living wall systems in terms of irrigation management. Urban Forestry and Urban Greening, 2020, 54, 126782.	2.3	8
30	Removal of Volatile Organic Compounds by Means of a Felt-Based Living Wall Using Different Plant Species. Sustainability, 2021, 13, 6393.	1.6	8
31	Polyculture production of vegetables and red hybrid tilapia for self-consumption by means of micro-scale aquaponic systems. Aquacultural Engineering, 2021, 95, 102181.	1.4	8
32	Water consumption of felt-based outdoor living walls in warm climates. Urban Forestry and Urban Greening, 2021, 59, 127025.	2.3	7
33	IGRA. A tool for applying the benchmarking initiative to irrigated areas. Irrigation and Drainage, 2005, 54, 307-319.	0.8	6
34	Development of an integrated computational tool to improve performance of irrigation districts. Journal of Hydroinformatics, 2012, 14, 716-730.	1.1	5
35	Vertical Greening Systems. , 2018, , 55-63.		5
36	Consumers' knowledge, attitudes and willingness to pay for aquaponic products in Spain and Latin America. International Journal of Gastronomy and Food Science, 2021, 24, 100350.	1.3	5

#	Article	IF	CITATIONS
37	Characterisation of aquaponic producers and small-scale facilities in Spain and Latin America. Aquaculture International, 2022, 30, 517-532.	1.1	4
38	Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquacultural Engineering, 2022, 97, 102242.	1.4	4
39	Turfgrass Recovery after an Induced Drought Period on a Golf Course Fairway: Case Study in Southern Spain. Journal of Irrigation and Drainage Engineering - ASCE, 2019, 145, .	0.6	3
40	â€~Tifway' bermudagrass recovery after drought periods of different durations under shallow sandy soil in a Mediterranean climate. Agricultural Water Management, 2019, 223, 105690.	2.4	2
41	RESULTADOS DE ENSAYOS DEL BANCO AUTOMÃTICO DE ASPERSORES. , 2015, , .		О
42	Assessment of Actual Workload and Student Performance in the Agricultural Engineering Final Degree Project in a Spanish Higher Education Context. Education Sciences, 2022, 12, 418.	1.4	0