Alvaro Goyanes Goyanes

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/4013427/alvaro-goyanes-goyanes-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75
papers
6,348
thindex
79
g-index
79
ext. papers
7,920
ext. citations
7,920
avg, IF
L-index

#	Paper	IF	Citations
75	Effect of geometry on drug release from 3D printed tablets. <i>International Journal of Pharmaceutics</i> , 2015 , 494, 657-663	6.5	381
74	Fused-filament 3D printing (3DP) for fabrication of tablets. <i>International Journal of Pharmaceutics</i> , 2014 , 476, 88-92	6.5	372
73	3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2015 , 89, 157-62	5.7	356
72	3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. <i>Molecular Pharmaceutics</i> , 2015 , 12, 4077-84	5.6	314
71	Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. <i>International Journal of Pharmaceutics</i> , 2016 , 503, 207-12	6.5	276
7°	3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. <i>Journal of Controlled Release</i> , 2016 , 234, 41-8	11.7	256
69	Selective laser sintering (SLS) 3D printing of medicines. <i>International Journal of Pharmaceutics</i> , 2017 , 529, 285-293	6.5	248
68	3D Printing Pharmaceuticals: Drug Development to Frontline Care. <i>Trends in Pharmacological Sciences</i> , 2018 , 39, 440-451	13.2	232
67	Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. <i>International Journal of Pharmaceutics</i> , 2015 , 496, 414-20	6.5	217
66	Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. <i>International Journal of Pharmaceutics</i> , 2017 , 527, 21-30	6.5	198
65	Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. <i>International Journal of Pharmaceutics</i> , 2018 , 545, 144-152	6.5	169
64	Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. <i>International Journal of Pharmaceutics</i> , 2017 , 527, 161-170	6.5	158
63	3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. <i>International Journal of Pharmaceutics</i> , 2017 , 528, 268-279	6.5	151
62	Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. <i>International Journal of Pharmaceutics</i> , 2016 , 514, 290-295	6.5	149
61	Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. <i>International Journal of Pharmaceutics</i> , 2017 , 532, 313-317	6.5	143
60	Fabricating 3D printed orally disintegrating printlets using selective laser sintering. <i>International Journal of Pharmaceutics</i> , 2018 , 541, 101-107	6.5	139
59	3D printing of drug-loaded gyroid lattices using selective laser sintering. <i>International Journal of Pharmaceutics</i> , 2018 , 547, 44-52	6.5	131

58	Reshaping drug development using 3D printing. <i>Drug Discovery Today</i> , 2018 , 23, 1547-1555	8.8	131
57	Patient acceptability of 3D printed medicines. <i>International Journal of Pharmaceutics</i> , 2017 , 530, 71-78	6.5	128
56	3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method. <i>Pharmaceutics</i> , 2019 , 11,	6.4	127
55	Shaping the future: recent advances of 3D printing in drug delivery and healthcare. <i>Expert Opinion on Drug Delivery</i> , 2019 , 16, 1081-1094	8	103
54	Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. <i>International Journal of Pharmaceutics</i> , 2019 , 567, 118471	6.5	100
53	3D printing: Principles and pharmaceutical applications of selective laser sintering. <i>International Journal of Pharmaceutics</i> , 2020 , 586, 119594	6.5	99
52	An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. <i>Pharmaceutical Research</i> , 2018 , 36, 4	4.5	95
51	3D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technology. <i>Pharmaceutics</i> , 2019 , 11,	6.4	93
50	Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. <i>International Journal of Pharmaceutics</i> , 2019 , 567, 118497	6.5	91
49	Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets. <i>AAPS PharmSciTech</i> , 2018 , 19, 3355-3361	3.9	90
48	3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. <i>International Journal of Pharmaceutics</i> , 2018 , 549, 283-292	6.5	77
47	M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. <i>International Journal of Pharmaceutics</i> , 2020 , 590, 119837	6.5	70
46	Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 2021 , 329, 743-757	11.7	68
45	Gastrointestinal release behaviour of modified-release drug products: dynamic dissolution testing of mesalazine formulations. <i>International Journal of Pharmaceutics</i> , 2015 , 484, 103-8	6.5	64
44	PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. <i>International Journal of Pharmaceutics</i> , 2018 , 536, 158-164	6.5	63
43	Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. <i>Pharmaceutics</i> , 2020 , 12,	6.4	56
42	Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. <i>International Journal of Pharmaceutics</i> , 2019 , 567, 118443	6.5	55
41	3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients. <i>Pharmaceutics</i> , 2020 , 12,	6.4	55

40	Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. <i>Journal of Controlled Release</i> , 2021 , 332, 367-389	11.7	54
39	Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. <i>Additive Manufacturing</i> , 2020 , 33, 101071	6.1	50
38	Hydroxypropyl-Ecyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. <i>Carbohydrate Polymers</i> , 2019 , 221, 55-62	10.3	47
37	3D printed opioid medicines with alcohol-resistant and abuse-deterrent properties. <i>International Journal of Pharmaceutics</i> , 2020 , 579, 119169	6.5	45
36	A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics. <i>Pharmaceutical Research</i> , 2019 , 36, 102	4.5	40
35	Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. <i>Advanced Drug Delivery Reviews</i> , 2021 , 174, 553-575	18.5	40
34	Non-destructive dose verification of two drugs within 3D printed polyprintlets. <i>International Journal of Pharmaceutics</i> , 2020 , 577, 119066	6.5	39
33	Advances in powder bed fusion 3D printing in drug delivery and healthcare. <i>Advanced Drug Delivery Reviews</i> , 2021 , 174, 406-424	18.5	39
32	Predicting the gastrointestinal behaviour of modified-release products: utility of a novel dynamic dissolution test apparatus involving the use of bicarbonate buffers. <i>International Journal of Pharmaceutics</i> , 2014 , 475, 585-91	6.5	38
31	I Spy with My Little Eye: A Paediatric Visual Preferences Survey of 3D Printed Tablets. <i>Pharmaceutics</i> , 2020 , 12,	6.4	35
30	Harnessing artificial intelligence for the next generation of 3D printed medicines. <i>Advanced Drug Delivery Reviews</i> , 2021 , 175, 113805	18.5	35
29	Anti-biofilm multi drug-loaded 3D printed hearing aids. <i>Materials Science and Engineering C</i> , 2021 , 119, 111606	8.3	33
28	3D printed tacrolimus suppositories for the treatment of ulcerative colitis. <i>Asian Journal of Pharmaceutical Sciences</i> , 2021 , 16, 110-119	9	32
27	Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. <i>Materials Science and Engineering C</i> , 2021 , 120, 111773	8.3	32
26	Disrupting 3D printing of medicines with machine learning. <i>Trends in Pharmacological Sciences</i> , 2021 , 42, 745-757	13.2	28
25	3D Printing of Tunable Zero-Order Release Printlets. <i>Polymers</i> , 2020 , 12,	4.5	27
24	Accelerating the dissolution of enteric coatings in the upper small intestine: evolution of a novel pH 5.6 bicarbonate buffer system to assess drug release. <i>International Journal of Pharmaceutics</i> , 2014 , 468, 172-7	6.5	24
23	Machine learning predicts 3D printing performance of over 900 drug delivery systems. <i>Journal of Controlled Release</i> , 2021 , 337, 530-545	11.7	24

22	Co-processed MCC-Eudragit E excipients for extrusion-spheronization. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 79, 658-63	5.7	21
21	3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. <i>Biomedicines</i> , 2020 , 8,	4.8	20
20	A dynamic in vitro model to evaluate the intestinal release behaviour of modified-release corticosteroid products. <i>Journal of Drug Delivery Science and Technology</i> , 2015 , 25, 36-42	4.5	19
19	Connected healthcare: Improving patient care using digital health technologies. <i>Advanced Drug Delivery Reviews</i> , 2021 , 178, 113958	18.5	19
18	New co-processed MCC-based excipient for fast release of low solubility drugs from pellets prepared by extrusion-spheronization. <i>Drug Development and Industrial Pharmacy</i> , 2015 , 41, 362-8	3.6	16
17	Optical biosensors - Illuminating the path to personalized drug dosing. <i>Biosensors and Bioelectronics</i> , 2021 , 188, 113331	11.8	15
16	A comparison of chitosan-silica and sodium starch glycolate as disintegrants for spheronized extruded microcrystalline cellulose pellets. <i>Drug Development and Industrial Pharmacy</i> , 2011 , 37, 825-31	3.6	14
15	Layered gadolinium hydroxides for simultaneous drug delivery and imaging. <i>Dalton Transactions</i> , 2018 , 47, 3166-3177	4.3	13
14	Electrochemical biosensors: a nexus for precision medicine. <i>Drug Discovery Today</i> , 2021 , 26, 69-79	8.8	13
13	Gastrointestinal Tracking and Gastric Emptying of Coated Capsules in Rats with or without Sedation Using CT imaging. <i>Pharmaceutics</i> , 2020 , 12,	6.4	12
12	Control of drug release by incorporation of sorbitol or mannitol in microcrystalline-cellulose-based pellets prepared by extrusion-spheronization. <i>Pharmaceutical Development and Technology</i> , 2010 , 15, 626-35	3.4	12
11	3D Printing Technologies, Implementation and Regulation: An Overview. <i>AAPS Advances in the Pharmaceutical Sciences Series</i> , 2018 , 21-40	0.5	12
10	Smartphone-enabled 3D printing of medicines. <i>International Journal of Pharmaceutics</i> , 2021 , 609, 12119	% .5	11
9	Chitosan-kaolin coprecipitate as disintegrant in microcrystalline cellulose-based pellets elaborated by extrusion-spheronization. <i>Pharmaceutical Development and Technology</i> , 2013 , 18, 137-45	3.4	10
8	3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. <i>Pharmaceutics</i> , 2021 , 13,	6.4	6
7	A customizable 3D printed device for enzymatic removal of drugs in water. <i>Water Research</i> , 2022 , 208, 117861	12.5	5
6	Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. <i>Pharmaceutics</i> , 2021 , 13,	6.4	5
5	Advancing pharmacy and healthcare with virtual digital technologies <i>Advanced Drug Delivery Reviews</i> , 2022 , 182, 114098	18.5	4

3D printing of pharmaceutical products **2021**, 569-597 4 2 Volumetric 3D printing for rapid production of medicines. *Additive Manufacturing*, **2022**, 52, 102673 6.1 Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy.. 6.4 1 Pharmaceutics, 2022, 14, 3D printed pharmaceuticals and medical devices: an interview with Evaro Goyanes. Journal of 3D 1.5

Printing in Medicine, **2017**, 1, 145-147