List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4013358/publications.pdf Version: 2024-02-01

ΥΠΟΛ ΥΔΊμοΔΊμη

#	Article	IF	CITATIONS
1	Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 2009, 34, 3784-3798.	7.1	395
2	A review of hydrogen storage systems based on boron and its compounds. International Journal of Hydrogen Energy, 2004, 29, 1371-1376.	7.1	247
3	Templated Porous Carbons:  A Review Article. Industrial & Engineering Chemistry Research, 2005, 44, 2893-2902.	3.7	241
4	Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology, 2016, 163, 166-176.	5.0	217
5	Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 17-37.	2.1	143
6	Removal of silver (I) from aqueous solutions with clinoptilolite. Microporous and Mesoporous Materials, 2006, 94, 99-104.	4.4	129
7	Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chemical Engineering Journal, 2013, 225, 625-635.	12.7	129
8	Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal. Journal of Environmental Chemical Engineering, 2018, 6, 1702-1713.	6.7	116
9	Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter. Fuel, 2000, 79, 1221-1227.	6.4	112
10	Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal, 2014, 242, 321-332.	12.7	101
11	Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite. Fuel, 2010, 89, 1903-1910.	6.4	88
12	Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel, 1998, 77, 1303-1309.	6.4	87
13	Air oxidation of Beypazari lignite at 50°C, 100°C and 150°C. Fuel, 1998, 77, 1809-1814.	6.4	75
14	Evolution of Carbon Microstructures during the Pyrolysis of Turkish Elbistan Lignite in the Temperature Range 700â^'1000 °C. Energy & Fuels, 2004, 18, 883-888.	5.1	74
15	Mesoporous MCM-41 material for hydrogen storage: A short review. International Journal of Hydrogen Energy, 2016, 41, 9789-9795.	7.1	72
16	Cation exchange properties of low rank Turkish coals: removal of Hg, Cd and Pb from waste water. Fuel Processing Technology, 2000, 68, 111-120.	7.2	56
17	Effect of Catalysts on the Pyrolysis of Turkish Zonguldak Bituminous Coal. Energy & Fuels, 2000, 14, 820-827.	5.1	55
18	Bio-Liquefaction/Solubilization of Low-Rank Turkish Lignites and Characterization of the Products. Energy & Fuels, 2003, 17, 1068-1074.	5.1	47

#	Article	IF	CITATIONS
19	Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous and Mesoporous Materials, 2006, 93, 304-312.	4.4	47
20	Removal of Boron from Aqueous Solutions by Adsorption Using Fly Ash, Zeolite, and Demineralized Lignite. Separation Science and Technology, 2009, 45, 105-115.	2.5	47
21	Trace elements in Turkish biomass fuels: Ashes of wheat straw, olive bagasse and hazelnut shell. Fuel, 2009, 88, 1842-1851.	6.4	46
22	Chemical desulfurization of Turkish Cayirhan lignite with HI using microwave and thermal energyâ~†. Fuel, 2003, 82, 531-537.	6.4	43
23	Oxidative pyrolysis of Turkish lignites in air up to 500°C. Fuel Processing Technology, 2000, 67, 177-189.	7.2	39
24	Interaction of kerogen and mineral matrix of an oil shale in an oxidative atmosphere. Thermochimica Acta, 1985, 94, 285-293.	2.7	38
25	Air oxidation of Turkish Beypazari lignite. 1. Change of structural characteristics in oxidation reactions of 150 .degree.C. Energy & amp; Fuels, 1993, 7, 367-372.	5.1	38
26	Combustion characteristics of Turkish hazelnut shell biomass, lignite coal, and their respective blends via thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1723-1729.	3.6	33
27	Biodesulfurization of Turkish lignites. Fuel, 1996, 75, 1596-1600.	6.4	32
28	Significant improvement in the hydrogen storage capacity of a reduced graphene oxide/TiO ₂ nanocomposite by chemical bonding of Ti–O–C. RSC Advances, 2016, 6, 32831-32838.	3.6	32
29	Effect of acid dissolution on the mineral matrix and organic matter of Zefa EFE oil shale. Fuel Processing Technology, 1985, 11, 71-86.	7.2	31
30	Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of graphene nanosheets. Fuel, 2011, 90, 2609-2616.	6.4	30
31	Removal of Silver(I) from Aqueous Solutions with Low-Rank Turkish Coals. Adsorption Science and Technology, 2004, 22, 135-144.	3.2	28
32	Co-firing of biomass with coals. Journal of Thermal Analysis and Calorimetry, 2011, 103, 925-933.	3.6	28
33	Co-firing of biomass with coals. Journal of Thermal Analysis and Calorimetry, 2012, 107, 293-298.	3.6	28
34	Layer-by-Layer Polypyrrole Coated Graphite Oxide and Graphene Nanosheets as Catalyst Support Materials for Fuel Cells. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 233-247.	2.1	27
35	Structural characterization of semicokes produced from the pyrolysis of petroleum pitches. Journal of Analytical and Applied Pyrolysis, 2015, 111, 15-26.	5.5	27
36	Carbonisation of Fir (Abies bornmulleriana) wood in an open pyrolysis system at 50–300°C. Journal of Analytical and Applied Pyrolysis, 2003, 67, 11-22.	5.5	26

#	Article	IF	CITATIONS
37	A Controlled Synthesis Strategy To Enhance the CO ₂ Adsorption Capacity of MIL-88B Type MOF Crystallites by the Crucial Role of Narrow Micropores. Industrial & Engineering Chemistry Research, 2019, 58, 14058-14072.	3.7	26
38	Synthesis of anatase TiO 2 with exposed (001) facets grown on N-doped reduced graphene oxide for enhanced hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 6096-6103.	7.1	24
39	Effect of Reaction Temperature and Catalyst Type on the Formation of Boron Nitride Nanotubes by Chemical Vapor Deposition and Measurement of Their Hydrogen Storage Capacity. Industrial & Engineering Chemistry Research, 2012, 51, 11341-11347.	3.7	23
40	Nuclear magnetic resonance spectra of two reductively ethylated fuels. Fuel, 1978, 57, 399-404.	6.4	22
41	Decoration of graphene sheets with Pd/Al2O3 hybrid particles for hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41, 9810-9818.	7.1	22
42	Kinetic Modeling of Arsenic Removal from Water by Ferric Ion Loaded Red Mud. Separation Science and Technology, 2011, 46, 2380-2390.	2.5	20
43	SYNTHESIS OF MESOPOROUS MCM-41 MATERIALS WITH LOW-POWER MICROWAVE HEATING. Chemical Engineering Communications, 2013, 200, 1057-1070.	2.6	20
44	Effect of loading bimetallic mixture of Ni and Pd on hydrogen storage capacity of MCM-41. International Journal of Hydrogen Energy, 2015, 40, 7636-7643.	7.1	20
45	Effect of transition metal oxide nanoparticles on gas adsorption properties of graphene nanocomposites. Applied Surface Science, 2019, 475, 1070-1076.	6.1	20
46	Depolymerization of Turkish lignites. Fuel, 1982, 61, 1138-1140.	6.4	18
47	Polypyrrole Coated Thermally Exfoliated Graphite Nanoplatelets and the Effect of Oxygen Surface Groups on the Interaction of Platinum Catalysts with Graphene-Based Nanocomposites. Industrial & Engineering Chemistry Research, 2011, 50, 12562-12571.	3.7	18
48	Air oxidation of Turkish Beypazari lignite. 2. Effect of demineralization on structural characteristics in oxidation reactions at 150 .degree.C. Energy & Fuels, 1994, 8, 188-193.	5.1	17
49	CADMIUM (II) AND MERCURY (II) REMOVAL FROM AQUATIC SOLUTIONS WITH LOW-RANK TURKISH COAL. Separation Science and Technology, 2001, 36, 3657-3671.	2.5	17
50	Fuel supply chain analysis of Turkey. Renewable and Sustainable Energy Reviews, 2007, 11, 2058-2082.	16.4	17
51	Pyridine extracts of solid fuels. Fuel, 1979, 58, 121-131.	6.4	15
52	Depolymerization of Turkish lignites. 2. Effect of phenol concentration in a closed system. Fuel, 1981, 60, 1031-1038.	6.4	15
53	The factors affecting the growth kinetics of Sulfolobus solfataricus, a sulfur removing bacterium. Fuel Processing Technology, 1993, 33, 61-75.	7.2	15
54	Biodesulphurization of Turkish lignites. 3. The effect of lignite type and particle size on microbial desulphurization by Rhodococcus rhodochrous. Fuel, 1998, 77, 1121-1124.	6.4	15

#	Article	IF	CITATIONS
55	Revisiting the biodesulfurization capability of hyperthermophilic archaeon Sulfolobus solfataricus P2 revealed DBT consumption by the organism in an oil/water two-phase liquid system at high temperatures. Turkish Journal of Chemistry, 2015, 39, 255-266.	1.2	15
56	Depolymerization of Turkish lignites. I. Effect of substituted phenols. Fuel, 1981, 60, 1027-1030.	6.4	14
57	Biodesulfurization of Turkish lignites: 2. Microbial desulfurization of Mengen lignite by the mesophilic microorganism Rhodococcus rhodochrous. Fuel, 1997, 76, 341-344.	6.4	14
58	A remarkable increase in the adsorbed H2 amount: Influence of pore size distribution on the H2 adsorption capacity of Fe-BTC. International Journal of Hydrogen Energy, 2020, 45, 12394-12407.	7.1	14
59	Analysis of a retort oil from an Israeli shale by gas chromatography-mass spectrometry-selected ion monitoring. Fuel, 1985, 64, 102-107.	6.4	12
60	Images of demineralized coal surfaces by scanning tunnelling microscopy. Fuel, 1996, 75, 855-857.	6.4	12
61	Development of supercapacitor active composites by electrochemical deposition of polypyrrole on carbon nanofibres. Polymer Bulletin, 2012, 68, 1395-1404.	3.3	12
62	The role of ultramicropores in the CO ₂ adsorption capacity of Fe–BTC crystallites synthesized with a perturbation-assisted nanofusion synthesis strategy. CrystEngComm, 2020, 22, 932-944.	2.6	12
63	Diffusion of Volatile Organic Chemicals in Porous Media. 1. Alcohol/Natural Zeolite Systems. Energy & Fuels, 2005, 19, 2219-2224.	5.1	11
64	Diffusion of alcohols and aromatics in a mesoporous MCM-41 material. Fluid Phase Equilibria, 2014, 382, 169-179.	2.5	11
65	Synthesis of palladium incorporated MCM-41 via microwave irradiation and investigation of its hydrogen storage properties. International Journal of Hydrogen Energy, 2016, 41, 9828-9833.	7.1	11
66	Catalytic synthesis of boron nitride nanotubes at low temperatures. Nanoscale, 2018, 10, 4658-4662.	5.6	11
67	Interaction of coals with oxygen at temperatures up to 600°C. Thermochimica Acta, 1987, 113, 217-231.	2.7	9
68	Thermochemical reactions in subcritical and supercritical interaction between Mishor Rotem oil shale and toluene. Thermochimica Acta, 1986, 105, 51-63.	2.7	8
69	RECOVERY OF ORGANIC MATERIAL BY SUPERCRITICAL TOLUENE FROM TURKISH GOYNOK OIL SHALE 1. IDENTIFICATION OF THE MINERALS AND THEIR EFFECT ON THE RECOVERY OF OKGANIC MATERIAL. Petroleum Science and Technology, 1990, 8, 51-76.	0.2	8
70	Diffusion of Solvents in Coals:  1. Measurement of Diffusion Coefficients of Pyridine in Elbistan Lignite. Energy & Fuels, 2001, 15, 135-140.	5.1	8
71	Catalytic Decarboxylation of Elbistan Lignite. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2002, 24, 581-589.	0.5	8
72	SUPERCRITICAL EXTRACTION AND DESULPHURIZATION OF BEYPAZARI LIGNITE BY ETHYL ALCOHOL/NaOH TREATMENT 1. EFFECT OF ETHYL ALCOHOL/COAL RATIO AND NaOH. Petroleum Science and Technology, 1990, 8, 87-105.	0.2	7

#	Article	IF	CITATIONS
73	Effect of heating rate on glass transition temperature of Zonguldak bituminous coal. Energy & Fuels, 1991, 5, 701-703.	5.1	7
74	Effect of Rhodococcus rhodochrous on the pyrolysis kinetics of Mengen lignite. Fuel, 1999, 78, 359-363.	6.4	7
75	Diffusion of Volatile Organic Chemicals in Porous Media. 2. Alcohol/Templated Porous Carbon Systems. Energy & Fuels, 2006, 20, 1269-1274.	5.1	7
76	Carbon Nanotube and Nanofiber Growth on Zn-Based Catalysts. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 155-165.	2.1	7
77	Quantitative determination of shale oil compounds by gas chromatography-mass spectrometry-selected ion monitoring. Fuel Processing Technology, 1985, 11, 59-69.	7.2	6
78	Interaction of kerogen and mineral matrix of göynük oil shale in an air atmosphere. Thermochimica Acta, 1990, 157, 193-201.	2.7	6
79	Engineering MILâ€88B crystallites for enhanced H 2 uptake capacity: The role of ultramicropores. International Journal of Energy Research, 2020, 44, 2875-2888.	4.5	6
80	RECOVERY OF ORGANIC MATERIAL BY SUPERCRITICAL TOLUENE FROM TURKISH G×YNÜK OIL SHALE. 2. KINETIC COMPARISON WITH U.S.WESTERN REFERENCE OIL SHALE. Petroleum Science and Technology, 1991, 9, 159-174.	0.2	5
81	Production of Carbon Nanotubes over Fe-FSM-16 Catalytic Material: Effect of Acetylene Flow Rate and CVD Temperature. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 311-325.	2.1	5
82	Interaction of Turkish Beypazari lignite with I2. Fuel Processing Technology, 2001, 69, 95-106.	7.2	4
83	Biodesulfurization of Mengen Lignite with Rhodoccocus rhodochrous : Effects of Lignite Concentration and Retreatment. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2002, 24, 625-631.	0.5	4
84	Characterization of bio-oils and bio-char obtained from the pyrolysis of a mixture of <i>Lolium perenne, Festuca ovina, Festuca rubra</i> and <i>Poa pratensis</i> grasses. Biofuels, 2016, 7, 181-189.	2.4	4
85	Mild oxidation of two low-rank mature coals by alkaline nitrobenzene. Fuel, 1973, 52, 115-117.	6.4	3
86	Depolymerization of Illinois no. 6 coal by quinoline diffusion into the coal matrix. Fuel Processing Technology, 1985, 10, 299-309.	7.2	3
87	SUPERCRITICAL EXTRACTION AND DESULPHURIZATION OF BEYPAZARI LIGNITE BY ETHYL ALCOHOL/NaOH TREATMENT 2. KINETICS. Petroleum Science and Technology, 1990, 8, 221-240.	0.2	3
88	Identification of organic sulfur compounds in supercritical extracts of Beypazari lignite using deconvoluted differential pulse polarograms. Energy & Fuels, 1993, 7, 620-624.	5.1	3
89	Air Oxidation of Turkish Beypazari Lignite. 3. Change in the Structural Characteristics of the Residue in Oxidation Reactions at 150 .degree.C. Energy & Fuels, 1994, 8, 798-803.	5.1	3
90	Decarboxylation of Beypazari Lignite by the Catalytic Effect of Cr3+and Fe3+lons. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2005, 27, 1193-1202.	0.5	3

#	Article	IF	CITATIONS
91	Oxidation of solid fuels by alkaline nitrobenzene. Fuel, 1973, 52, 81-82.	6.4	2
92	CHARACTERIZATION OF THE STRUCTURAL FEATURES OF OXIDIZED BEYPAZARI LIGNITE USING DECONVOLUTED SOLID STATE ¹³ C NMR SPECTRA. Petroleum Science and Technology, 1990, 8, 917-933.	0.2	2
93	Decarboxylation of Beypazari Lignite by the Catalytic Effect of Cu2+, Zn2+, and Ag+lons. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2003, 25, 969-982.	0.5	2
94	Diffusion of Solvents in Coals:  2. Measurement of Diffusion Coefficients of Pyridine in Çayirhan Lignite. Energy & Fuels, 2006, 20, 1150-1156.	5.1	2
95	Structural aspects of AlPO4-5 zeotypes synthesized by microwave-hydrothermal process. 1. Effect of heating time and microwave power. Journal of Porous Materials, 2010, 17, 727-736.	2.6	2
96	Facile synthesis of polypyrrole/graphene nanosheet-based nanocomposites as catalyst support for fuel cells. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	2
97	Formation of azo compounds during the mild oxidation of solid fuels. Fuel, 1974, 53, 223-224.	6.4	1
98	STRUCTURAL ANALYSIS OF RETORT OIL FROM AN ISRAELI SHALE. Liquid Fuels Technology, 1985, 3, 449-464.	0.6	1
99	Lyophilization-Induced Structural Changes in Solvent-Swollen and Supercritical Carbon Dioxide Treated Low-Rank Turkish Coals and Characterization of Their Extracts. Energy & Fuels, 2005, 19, 1056-1064.	5.1	1
100	Binding Mechanisms of As(III) on Activated Carbon/Titanium Dioxide Nanocomposites: A potential method for arsenic removal from water. Materials Research Society Symposia Proceedings, 2012, 1449, 159.	0.1	1
101	An Improved Technique for the Exfoliation of Graphene Nanosheets and Utilization of their Nanocomposites as Fuel Cell Electrodes. Key Engineering Materials, 0, 543, 9-12.	0.4	1
102	Size and Dispersion Control of Pt Nanoparticles Grown Upon Graphite-Derived Nanosheets. Chemical Engineering Communications, 2015, 202, 1645-1656.	2.6	1
103	Non-isothermal kinetics of pyrolysis of Turkish petroleum pitches. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2197-2204.	2.3	1
104	Hyperthermophilic flavin reductase fromSulfolobus solfataricusP2: Production and biochemical characterization. Biotechnology and Applied Biochemistry, 2019, 66, 915-923.	3.1	1
105	Synthesis of Titanium-Decorated Graphene for Renewable Energy Applications. , 2015, , 863-871.		1
106	ELECTROCHEMICAL IBTERACTIOS OF BEYPAZARI LIGNITE IS STROHG ACIDIC MED1A. Petroleum Science and Technology, 1987, 5, 677-696.	0.2	0
107	Evaluation of the Adsorption Potential of Synthesized Anatase Nanoparticles for Arsenic Removal. Materials Research Society Symposia Proceedings, 2011, 1317, 1.	0.1	0
108	Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques. Materials Research Society Symposia Proceedings, 2012, 1451, 131-136.	0.1	0