Giovanni Sette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4013223/publications.pdf

Version: 2024-02-01

21 papers

2,965 citations

393982 19 h-index 713013 21 g-index

21 all docs

21 docs citations

times ranked

21

5262 citing authors

#	Article	IF	Citations
1	Theratyping cystic fibrosis <i>in vitro</i> in ALI culture and organoid models generated from patient-derived nasal epithelial conditionally reprogrammed stem cells. European Respiratory Journal, 2021, 58, 2100908.	3.1	39
2	A new bioavailable fenretinide formulation with antiproliferative, antimetabolic, and cytotoxic effects on solid tumors. Cell Death and Disease, 2019, 10, 529.	2.7	37
3	A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 373.	3. 5	27
4	The kinase inhibitor SI113 induces autophagy and synergizes with quinacrine in hindering the growth of human glioblastoma multiforme cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 202.	3.5	26
5	Natural compound Tetrocarcin-A downregulates Junctional Adhesion Molecule-A in conjunction with HER2 and inhibitor of apoptosis proteins and inhibits tumor cell growth. Cancer Letters, 2019, 440-441, 23-34.	3.2	17
6	Conditionally reprogrammed cells (CRC) methodology does not allow the ⟨i⟩in vitro⟨/i⟩ expansion of patientâ€derived primary and metastatic lung cancer cells. International Journal of Cancer, 2018, 143, 88-99.	2.3	22
7	Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. Journal of Experimental and Clinical Cancer Research, 2018, 37, 140.	3.5	27
8	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	1.6	44
9	Wharton's jelly mesenchymal stromal cells have contrasting effects on proliferation and phenotype of cancer stem cells from different subtypes of lung cancer. Experimental Cell Research, 2016, 345, 190-198.	1.2	27
10	Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget, 2016, 7, 11332-11348.	0.8	49
11	Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells. European Journal of Pharmacology, 2015, 762, 283-292.	1.7	43
12	Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death and Disease, 2015, 6, e1850-e1850.	2.7	42
13	Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death and Differentiation, 2014, 21, 1877-1888.	5.0	90
14	Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts. Journal of Experimental and Clinical Cancer Research, 2013, 32, 91.	3.5	18
15	The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. Journal of Molecular Medicine, 2012, 90, 667-679.	1.7	54
16	EGFR Inhibition Abrogates Leiomyosarcoma Cell Chemoresistance through Inactivation of Survival Pathways and Impairment of CSC Potential. PLoS ONE, 2012, 7, e46891.	1.1	36
17	Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. Journal of Neuroinflammation, 2011, 8, 32.	3.1	102
18	Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 2008, 15, 504-514.	5.0	1,511

#	Article	IF	CITATIONS
19	Chemotherapy resistance of glioblastoma stem cells. Cell Death and Differentiation, 2006, 13, 1238-1241.	5.0	578
20	Inhibition of DNA Methylation Sensitizes Glioblastoma for Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Mediated Destruction. Cancer Research, 2005, 65, 11469-11477.	0.4	81
21	CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. European Journal of Immunology, 2004, 34, 1930-1940.	1.6	95