Branislav S Repić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012926/publications.pdf

Version: 2024-02-01

933447 996975 42 224 10 15 citations g-index h-index papers 42 42 42 197 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Investigation of ash deposit formation on heat transfer surfaces of boilers using coals and biomass. Thermal Science, 2019, 23, 1575-1586.	1.1	3
2	Review of the investigations of pulverized coal combustion processes in large power plants in laboratory for thermal engineering and energy: Part A. Thermal Science, 2019, 23, 1587-1609.	1.1	2
3	Review of the investigations of pulverized coal combustion processes in large power plants in laboratory for thermal engineering and energy: Part B. Thermal Science, 2019, 23, 1611-1626.	1.1	0
4	Modeling of transport processes in the cigarette principle combustion furnace. Thermal Science, 2019, 23, 1499-1510.	1.1	0
5	Analysis criteria for the assessment of deposits formation on boilers heat surfaces during biomass combustion. Savremena Poljoprivredna Tehnika, 2018, 44, 1-10.	0.2	1
6	Investigation of biomass gasification in an experimental reactor with a fluidized bed. Savremena Poljoprivredna Tehnika, 2018, 44, 21-28.	0.2	0
7	Qualitative and quantitative analysis of PAHs in biomass ash by LC/DAD. Savremena Poljoprivredna Tehnika, 2018, 44, 29-36.	0.2	0
8	Analysis of the influence of fuel characteristics and temperature conditions on the emission of harmful products of biomass combustion. Savremena Poljoprivredna Tehnika, 2018, 44, 11-20.	0.2	0
9	Analysis and selection of methodology for determination of the agricultural biomas combustion kinetics. Savremena Poljoprivredna Tehnika, 2017, 43, 131-140.	0.2	0
10	Analysis of the influence of fuel types and burners characteristics on pulverised biomass combustion. Savremena Poljoprivredna Tehnika, 2017, 43, 35-44.	0.2	0
11	Identification of PASs in agricultural biomass ash by GC/MS. Savremena Poljoprivredna Tehnika, 2017, 43, 91-100.	0.2	0
12	Possibility of non catalytic reduction of NOx by ammonia at baled biomass combustion in pushing furnace. Savremena Poljoprivredna Tehnika, 2017, 43, 101-110.	0.2	0
13	ProraÄun i dimenzionisanje vrtložnih gorionika korišćenjem namenskog softvera. Procesna Tehnika, 2017, 30, 357.	0.3	0
14	Eksperimentalna aparatura za simulaciju sagorevanja biomase i kontrolu azotnih oksida. Procesna Tehnika, 2017, 30, 175.	0.3	2
15	2D CFD numeriÄka simulacija fluidizacione komore sagorevanja bazirane na Euler-Euler granularnom modelu. Procesna Tehnika, 2017, 30, 277.	0.3	0
16	Potential of utilizing agricultural biomass for energy purposes within public-private partnerships. , 2016, , .		0
17	Determination of thermal conductivity of baled agricultural biomass. Renewable and Sustainable Energy Reviews, 2016, 58, 876-884.	16.4	3
18	The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide. Hemijska Industrija, 2016, 70, 287-298.	0.7	14

#	Article	IF	CITATIONS
19	Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation. Thermal Science, 2016, 20, 151-165.	1.1	3
20	Analysis of prescriped limits of NOx emissions from biomass combustion in selected European countries and in Serbia. Savremena Poljoprivredna Tehnika, 2016, 42, 207-215.	0.2	2
21	Optimization of furnace for agricultural biomass combustion in order to increase energy efficiency and reducing environmental pollution. Savremena Poljoprivredna Tehnika, 2016, 42, 187-196.	0.2	1
22	Effects of types of fuels on thermo-physical properties of baled biomass. Savremena Poljoprivredna Tehnika, 2016, 42, 197-206.	0.2	0
23	Analysis of potassium content in inert material of fluidized bed during biomass combustion. Savremena Poljoprivredna Tehnika, 2016, 42, 217-223.	0.2	0
24	Influence of biomass furnace volume change on flue gases burn out process. Renewable Energy, 2015, 76, 1-6.	8.9	13
25	Technical and economical justified replacement of existing crude oilboiler with new biomass boiler in central heating system. Savremena Poljoprivredna Tehnika, 2015, 41, 189-196.	0.2	0
26	Analysis of construction CHP biomass plants in the chemical industry. Savremena Poljoprivredna Tehnika, 2015, 41, 205-212.	0.2	0
27	Results of combustion of different waste fuel in fluidized bad. Reciklaža I Održivi Razvoj, 2014, 7, 22-29.	0.5	0
28	Fluidized combustion chamber CFD simulation based on Euler-Euler granular flow model. Termotehnika, 2014, 40, 19-33.	0.0	0
29	Investigation of the cigar burner combustion system for baled biomass. Biomass and Bioenergy, 2013, 58, 10-19.	5.7	14
30	Combustion of low grade fractions of Lubnica coal in fluidized bed. Thermal Science, 2012, 16, 297-311.	1.1	5
31	Experimental Determination of the Swirl Burner Laboratory Models Hydraulic Resistance. Procedia Engineering, 2012, 42, 672-682.	1.2	1
32	Experimental determination thermo physical characteristics of balled biomass. Energy, 2012, 45, 350-357.	8.8	5
33	Furnace for biomass combustion – Comparison of model with experimental data. International Journal of Heat and Mass Transfer, 2012, 55, 4312-4317.	4.8	15
34	Experimental method for determining Forchheimer equation coefficients related to flow of air through the bales of soy straw. International Journal of Heat and Mass Transfer, 2011, 54, 4300-4306.	4.8	11
35	Development of a Boiler for Small Straw Bales Combustion. , 2010, , .		2
36	Development of the boiler for combustion of agricultural biomass by products. Thermal Science, 2010, 14, 707-714.	1.1	11

#	Article	IF	CITATIONS
37	The boiler concept for combustion of large soya straw bales. Energy, 2009, 34, 715-723.	8.8	26
38	Soya straw bales combustion in high-efficient boiler. Thermal Science, 2008, 12, 51-60.	1.1	11
39	Experimental investigation of role of steam in entrained flow coal gasification. Fuel, 2007, 86, 194-202.	6.4	56
40	Mapping the potential for decentralized energy generation based on RES in Western Balkans. Thermal Science, 2007, 11, 7-26.	1.1	21
41	Influence of furnace combustion conditions on NOx emission from lignite flames. Journal of Hazardous Materials, 1994, 37, 225-232.	12.4	2
42	Development of a high-speed spectrophotometer for transient measurement of pulverized-coal flame radiation emission. Experimental Thermal and Fluid Science, 1991, 4, 747-750.	2.7	0