
Ik Jae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012921/publications.pdf Version: 2024-02-01

IN INE DADA

#	Article	IF	CITATIONS
1	Photovoltaic powered solar hydrogen production coupled with waste SO2 valorization enabled by MoP electrocatalysts. Applied Catalysis B: Environmental, 2022, 305, 121045.	20.2	11
2	Surfaceâ€Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small, 2022, 18, e2105611.	10.0	36
3	Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Applied Catalysis B: Environmental, 2022, 317, 121765.	20.2	28
4	Rationally Designed Window Layers for High Efficiency Perovskite/Si Tandem Solar Cells. Advanced Optical Materials, 2021, 9, 2100788.	7.3	7
5	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates. Small, 2021, 17, e2103457.	10.0	35
6	Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293, 120217.	20.2	57
7	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	5.1	8
8	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates (Small 39/2021). Small, 2021, 17, 2170206.	10.0	1
9	Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. Journal of Catalysis, 2020, 381, 462-467.	6.2	21
10	Thermal-assisted photo-annealed TiO2 thin films for perovskite solar cells fabricated under ambient air. Applied Surface Science, 2020, 530, 147221.	6.1	5
11	Improved interfacial properties of electrodeposited Cu ₂ ZnSn(S,Se) ₄ thinâ€film solar cells by a facile postâ€heat treatment process. Progress in Photovoltaics: Research and Applications, 2020, 28, 1345-1354.	8.1	26
12	Electrodeposited Heterogeneous Nickel-Based Catalysts on Silicon for Efficient Sunlight-Assisted Water Splitting. Cell Reports Physical Science, 2020, 1, 100219.	5.6	23
13	Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155-160.	12.6	420
14	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	8.0	67
15	Electrochemical approach for preparing conformal methylammonium lead iodide layer. Electrochemistry Communications, 2019, 103, 120-126.	4.7	12
16	A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform. Joule, 2019, 3, 807-818.	24.0	78
17	Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy, 2018, 48, 543-550.	16.0	19
18	Boosting the solar water oxidation performance of a BiVO ₄ photoanode by crystallographic orientation control. Energy and Environmental Science, 2018, 11, 1299-1306.	30.8	330

Ik Jae Park

#	Article	IF	CITATIONS
19	Enhanced electrical properties of Li–doped NiO x hole extraction layer in p–i–n type perovskite solar cells. Current Applied Physics, 2018, 18, S55-S59.	2.4	27
20	300% Enhancement of Carrier Mobility in Uniaxialâ€Oriented Perovskite Films Formed by Topotacticâ€Oriented Attachment. Advanced Materials, 2017, 29, 1606831.	21.0	120
21	Highly Efficient and Uniform 1â€cm ² Perovskite Solar Cells with an Electrochemically Deposited NiO _{<i>x</i>} Holeâ€Extraction Layer. ChemSusChem, 2017, 10, 2660-2667.	6.8	84
22	SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion. Materials Letters, 2017, 202, 48-51.	2.6	6
23	Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41898-41905.	8.0	51
24	An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale, 2016, 8, 11403-11412.	5.6	307
25	Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1845-1851.	4.6	93
26	Roughness of Ti Substrates for Control of the Preferred Orientation of TiO ₂ Nanotube Arrays as a New Orientation Factor. Journal of Physical Chemistry C, 2015, 119, 13297-13305.	3.1	26
27	New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry. Journal of Physical Chemistry C, 2015, 119, 27285-27290.	3.1	71
28	A tree-like nanoporous WO ₃ photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2015, 3, 12920-12926.	10.3	60
29	Observation of anatase nanograins crystallizing from anodic amorphous TiO ₂ nanotubes. CrystEngComm, 2015, 17, 7346-7353.	2.6	13
30	CdS-sensitized 1-D single-crystalline anatase TiO2 nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 863-869.	7.1	18
31	Tailoring uniform Î ³ -MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Research, 2015, 8, 990-1004.	10.4	39
32	Zn ₂ SnO ₄ -Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22991-22994.	3.1	92
33	Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion. Nanoscale, 2013, 5, 11725.	5.6	44
34	Î ³ -Al2O3 nanospheres-directed synthesis of monodispersed BaAl2O4:Eu2+ nanosphere phosphors. CrystEngComm, 2013, 15, 4797.	2.6	11
35	Influence of Niobium Doping in Hierarchically Organized Titania Nanostructure on Performance of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 5091-5095.	0.9	10
36	Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy and Environmental Science, 2012, 5, 7989.	30.8	88

#	Article	IF	CITATIONS
37	Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED. Materials Letters, 2012, 70, 37-39.	2.6	58