
Jianguo Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012593/publications.pdf Version: 2024-02-01

Ιμνισμο Τλης

#	Article	IF	CITATIONS
1	Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Research Letters, 2018, 13, 54.	5.7	100
2	Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale, 2021, 13, 2181-2208.	5.6	90
3	Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale, 2022, 14, 6709-6734.	5.6	79
4	Recent advances of polymer acceptors for high-performance organic solar cells. Journal of Materials Chemistry C, 2020, 8, 28-43.	5.5	56
5	Classification, Synthesis, and Application of Luminescent Silica Nanoparticles: a Review. Nanoscale Research Letters, 2019, 14, 190.	5.7	49
6	Using Dual Microresonant Cavity and Plasmonic Effects to Enhance the Photovoltaic Efficiency of Flexible Polymer Solar Cells. Nanomaterials, 2020, 10, 944.	4.1	44
7	Selective Sensing of Cu2+ and Fe3+ Ions with Vis-Excitation using Fluorescent Eu3+-Induced Aggregates of Polysaccharides (EIAP) in Mammalian Cells and Aqueous Systems. Journal of Hazardous Materials, 2020, 399, 122991.	12.4	33
8	The progress of non-fullerene small molecular acceptors for high efficiency polymer solar cells. Solar Energy Materials and Solar Cells, 2019, 190, 83-97.	6.2	28
9	Recent advances and prospects of D ₁ :D ₂ :A non-fullerene ternary polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 41-66.	5.5	23
10	Red light emitting nano-PVP fibers that hybrid with Ag@SiO2@Eu(tta)3phen-NPs by electrostatic spinning method. Optical Materials, 2018, 78, 220-225.	3.6	20
11	Smart sensing of Cu ²⁺ in living cells by water-soluble and nontoxic Tb ³⁺ /Eu ³⁺ -induced aggregates of polysaccharides through fluorescence imaging. Journal of Materials Chemistry C, 2020, 8, 8171-8182.	5.5	19
12	Effect of the Fe3+ concentration on the upconversion luminescence in NaGdF4:Yb3+, Er3+ nanorods prepared by a hydrothermal method. Journal of Materials Science, 2019, 54, 13200-13207.	3.7	15
13	Effect of ligand-antenna integration (ALI) in macromolecular structures on fluorescent property of processable macromolecule–lanthanide complexes. Optical Materials, 2007, 29, 1774-1781.	3.6	14
14	Fluorescent nanoblocks of lanthanide complexes on nano silicon dioxide and carbon nanotube donors with ligand–antenna integration (ALI) structure. Materials Science and Engineering C, 2009, 29, 85-91.	7.3	13
15	Polyvinylpyrrolidone Nanofibers Encapsulating an Anhydrous Preparation of Fluorescent SiO2–Tb3+ Nanoparticles. Nanomaterials, 2019, 9, 510.	4.1	13
16	Synthesis and tunable photoresponse for core-shell structured NaGdF4:Yb,Er@SiO2@Eu(TTA)3Phen nanocomplexes. Scripta Materialia, 2018, 152, 1-5.	5.2	9
17	An Effective Strategy to Design a Large Bandgap Conjugated Polymer by Tuning the Molecular Backbone Curvature. Macromolecular Rapid Communications, 2021, 42, 2000757.	3.9	7
18	Stable Fluorescence of Eu3+ Complex Nanostructures Beneath a Protein Skin for Potential Biometric Recognition. Nanomaterials, 2021, 11, 2462.	4.1	6

Jianguo Tang

#	Article	lF	CITATIONS
19	An Efficient Cyan Emission from Copper (II) Complexes with Mixed Organic Conjugate Ligands. Materials, 2022, 15, 1719.	2.9	6
20	Enhancing the Power Conversion Efficiency for Polymer Solar Cells by Incorporating Luminescent Nanosolid Micelles as Light Converter. ACS Applied Energy Materials, 2018, 1, 1445-1454.	5.1	5
21	Precise Control of Copper-Localized Surface Plasmon Resonance in the Near Infrared Region for Enhancement of Up-Conversion Luminescence. Metals, 2020, 10, 628.	2.3	5
22	Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs). Journal of Materials Science and Technology, 2021, 65, 72-81.	10.7	5
23	Preparation and characterization of silica@Eu spheres. AIP Advances, 2020, 10, .	1.3	3
24	Modified TiO ₂ Structures with Enhanced Photoluminescence and Photocatalytic Activity. Science of Advanced Materials, 2021, 13, 331-341.	0.7	3
25	Improved Mechanical, Anti-UV Irradiation, and Imparted Luminescence Properties of Cyanate Ester Resin/Unzipped Multiwalled Carbon Nanotubes/Europium Nanocomposites. Materials, 2021, 14, 4244.	2.9	3
26	Non-conjugated natural alginate as electron-transport layer for high performance polymer solar cells after modification. Journal of Power Sources, 2021, 510, 230408.	7.8	3
27	Smart Mn7+ Sensing via Quenching on Dual Fluorescence of Eu3+ Complex-Modified TiO2 Nanoparticles. Nanomaterials, 2021, 11, 3283.	4.1	3
28	Morphology and Luminescent Properties of Solid Micelles based on Europium(III) Complexes with Diblock Copolymers of Methyl Methylacrylate and Acrylic Acid. Ferroelectrics, 2015, 486, 91-105.	0.6	2
29	Extremely high reinforcement of highâ€density polyethylene by low loading of unzipped multiâ€wall carbon nanotubes. Journal of Applied Polymer Science, 2022, 139, 51478.	2.6	2
30	NIR-Fluorescent Hybrid Materials of Tm3+ Complexes Carried by Nano-SiO2 via Improved Sol–Gel Method. Nanomaterials, 2020, 10, 1964.	4.1	1
31	UV-protection and fluorescence properties of the exoskeleton obtained from a living diatom modified by an Eu3+-complex. Journal of Materials Chemistry C, 2021, 9, 10005-10012.	5.5	1
32	Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu3+ Complexes Adjusted by Amphiphilic Molecules. Polymers, 2022, 14, 905.	4.5	1
33	The Created Excellent Thermal, Mechanical and Fluorescent Properties by Doping Eu3+-Complex-Anchored Carbon Nanotubes in Polycyanate Resins. Nanomaterials, 2022, 12, 2040.	4.1	1
34	Living diatoms integrate polysaccharide-Eu3+ complex for UV downconversion. Journal of Materials Research and Technology, 2022, 19, 2774-2780.	5.8	1
35	Self-Photoluminescence of Unzipped Multi-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 1632.	4.1	0