
Piotr Masojć

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012471/publications.pdf Version: 2024-02-01

Ριστρ Μαςοιät

#	Article	lF	CITATIONS
1	The GAMYB gene in rye: sequence, polymorphisms, map location, allele-specific markers, and relationship with α-amylase activity. BMC Genomics, 2020, 21, 578.	2.8	9
2	A complex network of QTL for thousand-kernel weight in the rye genome. Journal of Applied Genetics, 2020, 61, 337-348.	1.9	4
3	Identification of a novel, dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye. PLoS ONE, 2018, 13, e0199335.	2.5	17
4	Comparative analysis of genetic architectures for nine developmental traits of rye. Journal of Applied Genetics, 2017, 58, 297-305.	1.9	7
5	ldentification of Single Nucleotide Polymorphisms Associated with Brown Rust Resistance, α-Amylase Activity and Pre-harvest Sprouting in Rye (Secale cereale L.). Plant Molecular Biology Reporter, 2017, 35, 366-378.	1.8	27
6	QTL mapping for benzoxazinoid content, preharvest sprouting, α-amylase activity, and leaf rust resistance in rye (Secale cereale L.). PLoS ONE, 2017, 12, e0189912.	2.5	13
7	Genetic analysis carried out in population tails reveals diverse two-loci interactions as a basic factor of quantitative traits variation in rye. Journal of Applied Genetics, 2016, 57, 165-173.	1.9	4
8	Proteomic analysis of developing rye grain with contrasting resistance to preharvest sprouting. Journal of Applied Genetics, 2013, 54, 11-19.	1.9	4
9	Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Molecular Breeding, 2012, 30, 1355-1361.	2.1	8
10	Genomic architecture of alpha-amylase activity in mature rye grain relative to that of preharvest sprouting. Journal of Applied Genetics, 2011, 52, 153-160.	1.9	11
11	Comparison of RAPD, ISSR and SSR markers in assessing genetic diversity among rye (Secale cereale L.) inbred lines. Plant Breeding and Seed Science, 2010, 62, 107-115.	0.1	11
12	Relationship between QTLs for preharvest sprouting and alpha-amylase activity in rye grain. Molecular Breeding, 2009, 23, 75-84.	2.1	40
13	Three classes of loci controlling preharvest sprouting in rye (Secale cereale L.) discerned by means of bidirectional selective genotyping (BSG). Euphytica, 2009, 170, 123-129.	1.2	35
14	A consensus map of chromosome 6R in rye (Secale cereale L.). Cellular and Molecular Biology Letters, 2009, 14, 190-8.	7.0	12
15	New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 × RXL10 intercross. Journal of Applied Genetics, 2007, 48, 11-24.	1.9	36
16	QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). Journal of Applied Genetics, 2007, 48, 211-217.	1.9	41
17	Pyramiding genes affecting sprouting resistance in Rye by means of marker assisted selection. Euphytica, 2005, 143, 257-260.	1.2	12
18	Mapping QTLs for alpha-amylase activity in rye grain. Journal of Applied Genetics, 2005, 46, 115-23.	1.9	20

PIOTR MASOJć

#	Article	IF	CITATIONS
19	Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in the C cytoplasm. Journal of Applied Genetics, 2005, 46, 371-3.	1.9	18

RAPD markers linked with restorer genes for the C-source of cytoplasmic male sterility in rye (Secale) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 13

21	Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. Journal of Applied Genetics, 2003, 44, 21-33.	1.9	23
22	Linkage groups and the indirect chromosome location of cms-P-linked AFLPs. Cellular and Molecular Biology Letters, 2002, 7, 721-36.	7.0	4
23	The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye. Cellular and Molecular Biology Letters, 2002, 7, 449-55.	7.0	6
24	The application of molecular markers in the process of selection. Cellular and Molecular Biology Letters, 2002, 7, 499-509.	7.0	11
25	Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theoretical and Applied Genetics, 2001, 102, 1273-1279.	3.6	52
26	Polymorphism of Endogenous Alpha-amylase Inhibitor in Barley. Journal of Cereal Science, 1994, 20, 43-49.	3.7	1
27	Polymorphism and chromosomal location of endogenous α-amylase inhibitor genes in common wheat. Theoretical and Applied Genetics, 1993, 85, 1043-1048.	3.6	13
28	Chromosomal rearrangements in the rye genome relative to that of wheat. Theoretical and Applied Genetics, 1993, 85-85, 673-680.	3.6	388
29	A Combined Monoclonal and Polyclonal Antibody Sandwich ELISA for Quantification of the Endogenous Alpha-amylase Inhibitor in Barley and Wheat. Journal of Cereal Science, 1993, 17, 115-124.	3.7	3
30	α-Amylase structural genes in rye. Theoretical and Applied Genetics, 1991, 82, 771-776.	3.6	14
31	Genetics of α-amylases from rye endosperm. Theoretical and Applied Genetics, 1987, 73, 440-444.	3.6	7