Manfred Marschall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crystal structure of the varicella-zoster Orf24-Orf27 nuclear egress complex spotlights multiple determinants of herpesvirus subfamily specificity. Journal of Biological Chemistry, 2022, 298, 101625.	3.4	8
2	Cyclin-Dependent Kinases (CDKs) and the Human Cytomegalovirus-Encoded CDK Ortholog pUL97 Represent Highly Attractive Targets for Synergistic Drug Combinations. International Journal of Molecular Sciences, 2022, 23, 2493.	4.1	12
3	The Oligomeric Assemblies of Cytomegalovirus Core Nuclear Egress Proteins Are Associated with Host Kinases and Show Sensitivity to Antiviral Kinase Inhibitors. Viruses, 2022, 14, 1021.	3.3	5
4	â€~Come together'—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises Both Essential and Accessory Functions. Cells, 2022, 11, 1837.	4.1	7
5	Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). International Journal of Molecular Sciences, 2021, 22, 575.	4.1	22
6	Phenotypical Characterization of the Nuclear Egress of Recombinant Cytomegaloviruses Reveals Defective Replication upon ORF-UL50 Deletion but Not pUL50 Phosphosite Mutation. Viruses, 2021, 13, 165.	3.3	12
7	Exploring the Human Cytomegalovirus Core Nuclear Egress Complex as a Novel Antiviral Target: A New Type of Small Molecule Inhibitors. Viruses, 2021, 13, 471.	3.3	10
8	Properties of Oligomeric Interaction of the Cytomegalovirus Core Nuclear Egress Complex (NEC) and Its Sensitivity to an NEC Inhibitory Small Molecule. Viruses, 2021, 13, 462.	3.3	13
9	Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Viruses, 2021, 13, 1248.	3.3	7
10	Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2. Pathogens, 2021, 10, .	2.8	3
11	Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. International Journal of Molecular Sciences, 2021, 22, 12858.	4.1	23
12	The Complex Regulatory Role of Cytomegalovirus Nuclear Egress Protein pUL50 in the Production of Infectious Virus. Cells, 2021, 10, 3119.	4.1	6
13	Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2. Pathogens, 2021, 10, 1076.	2.8	7
14	A highly potent trimeric derivative of artesunate shows promising treatment profiles in experimental models for congenital HCMV infection in vitro and ex vivo. Antiviral Research, 2020, 175, 104700.	4.1	14
15	Wedelolactone inhibits human cytomegalovirus replication by targeting distinct steps of the viral replication cycle. Antiviral Research, 2020, 174, 104677.	4.1	11
16	The Artemisinin-Derived Autofluorescent Compound BG95 Exerts Strong Anticytomegaloviral Activity Based on a Mitochondrial Targeting Mechanism. International Journal of Molecular Sciences, 2020, 21, 5578.	4.1	6
17	IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro. Viruses, 2020, 12, 1394.	3.3	35
18	(Iso)Quinoline–Artemisinin Hybrids Prepared through Click Chemistry: Highly Potent Agents against Viruses. Chemistry - A European Journal, 2020, 26, 12019-12026.	3.3	18

#	Article	IF	CITATIONS
19	A quantitative nuclear egress assay to investigate the nucleocytoplasmic capsid release of human cytomegalovirus. Journal of Virological Methods, 2020, 283, 113909.	2.1	15
20	Target verification of artesunate-related antiviral drugs: Assessing the role of mitochondrial and regulatory proteins by click chemistry and fluorescence labeling. Antiviral Research, 2020, 180, 104861.	4.1	13
21	Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus. Microorganisms, 2020, 8, 820.	3.6	16
22	Patterns of Autologous and Nonautologous Interactions between Core Nuclear Egress Complex (NEC) Proteins of α-, β- and γ-Herpesviruses. Viruses, 2020, 12, 303.	3.3	16
23	Nuclear Egress Complexes of HCMV and Other Herpesviruses: Solving the Puzzle of Sequence Coevolution, Conserved Structures and Subfamily-Spanning Binding Properties. Viruses, 2020, 12, 683.	3.3	23
24	The trimeric artesunate derivative TF27 exerts strong anti-cytomegaloviral efficacy: Focus on prophylactic efficacy and oral treatment of immunocompetent mice. Antiviral Research, 2020, 178, 104788.	4.1	12
25	Phosphosite Analysis of the Cytomegaloviral mRNA Export Factor pUL69 Reveals Serines with Critical Importance for Recruitment of Cellular Proteins Pin1 and UAP56/URH49. Journal of Virology, 2020, 94, .	3.4	7
26	The Cytomegalovirus Protein Kinase pUL97: Host Interactions, Regulatory Mechanisms and Antiviral Drug Targeting. Microorganisms, 2020, 8, 515.	3.6	34
27	The peptidyl-prolyl cis/trans isomerase Pin1 interacts with three early regulatory proteins of human cytomegalovirus. Virus Research, 2020, 285, 198023.	2.2	9
28	High-resolution crystal structures of two prototypical β- and γ-herpesviral nuclear egress complexes unravel the determinants of subfamily specificity. Journal of Biological Chemistry, 2020, 295, 3189-3201.	3.4	28
29	Differential upregulation of host cell protein kinases by the replication of α-, β- and γ-herpesviruses provides a signature of virus-specific signalling. Journal of General Virology, 2020, 101, 284-289.	2.9	6
30	Patient-Derived Cytomegaloviruses with Different Ganciclovir Sensitivities from UL97 Mutation Retain Their Replication Efficiency and Some Kinase Activity In Vitro. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	1
31	Artesunate derivative TF27 inhibits replication and pathogenesis of an oncogenic avian alphaherpesvirus. Antiviral Research, 2019, 171, 104606.	4.1	12
32	Chemically sulfated polysaccharides from natural sources: Assessment of extraction-sulfation efficiencies, structural features and antiviral activities. International Journal of Biological Macromolecules, 2019, 136, 521-530.	7.5	33
33	Human cytomegaloviral multifunctional protein kinase pUL97 impairs zebrafish embryonic development and increases mortality. Scientific Reports, 2019, 9, 7219.	3.3	5
34	Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97. Journal of Biological Chemistry, 2019, 294, 6188-6203.	3.4	19
35	Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorganic and Medicinal Chemistry, 2019, 27, 110-115.	3.0	43
36	In vivo proof-of-concept for two experimental antiviral drugs, both directed to cellular targets, using a murine cytomegalovirus model. Antiviral Research, 2019, 161, 63-69.	4.1	26

#	Article	IF	CITATIONS
37	Artesunate-derived monomeric, dimeric and trimeric experimental drugs – Their unique mechanistic basis and pronounced antiherpesviral activity. Antiviral Research, 2018, 152, 104-110.	4.1	26
38	Synthesis of Thymoquinone–Artemisinin Hybrids: New Potent Antileukemia, Antiviral, and Antimalarial Agents. ACS Medicinal Chemistry Letters, 2018, 9, 534-539.	2.8	70
39	Synthesis of Artemisininâ€Derived Dimers, Trimers and Dendrimers: Investigation of Their Antimalarial and Antiviral Activities Including Putative Mechanisms of Action. Chemistry - A European Journal, 2018, 24, 8103-8113.	3.3	60
40	Novel cytomegalovirus-inhibitory compounds of the class pyrrolopyridines show a complex pattern of target binding that suggests an unusual mechanism of antiviral activity. Antiviral Research, 2018, 159, 84-94.	4.1	18
41	Human cytomegalovirus utilises cellular dual-specificity tyrosine phosphorylation-regulated kinases during placental replication. Placenta, 2018, 72-73, 10-19.	1.5	19
42	Synthesis of Artemisinin–Estrogen Hybrids Highly Active against HCMV, <i>P. falciparum</i> , and Cervical and Breast Cancer. ACS Medicinal Chemistry Letters, 2018, 9, 1128-1133.	2.8	40
43	Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorganic and Medicinal Chemistry, 2018, 26, 3610-3618.	3.0	37
44	Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses, 2018, 10, 35.	3.3	26
45	Transmembrane Protein pUL50 of Human Cytomegalovirus Inhibits ISGylation by Downregulating UBE1L. Journal of Virology, 2018, 92, .	3.4	21
46	Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity. Antiviral Research, 2017, 143, 113-121.	4.1	26
47	Deeper Insight into the Sixâ€Step Domino Reaction of Aldehydes with Malononitrile and Evaluation of Antiviral and Antimalarial Activities of the Obtained Bicyclic Products. ChemistryOpen, 2017, 6, 364-374.	1.9	5
48	Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nature Communications, 2017, 8, 15071.	12.8	68
49	Synthesis of Novel Hybrids of Quinazoline and Artemisinin with High Activities against <i>Plasmodium falciparum</i> , Human Cytomegalovirus, and Leukemia Cells. ACS Omega, 2017, 2, 2422-2431.	3.5	70
50	The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Reviews in Medical Virology, 2017, 27, e1934.	8.3	39
51	Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners. Viruses, 2017, 9, 334.	3.3	14
52	Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus. Journal of General Virology, 2017, 98, 2569-2581.	2.9	36
53	Dynamic regulatory interaction between cytomegalovirus major tegument protein pp65 and protein kinase pUL97 in intracellular compartments, dense bodies and virions. Journal of General Virology, 2017, 98, 2850-2863.	2.9	8
54	Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope. Viruses, 2016, 8, 73.	3.3	5

#	Article	IF	CITATIONS
55	Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Viruses, 2016, 8, 219.	3.3	19
56	The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress. PLoS Pathogens, 2016, 12, e1005825.	4.7	43
57	New insight into the phosphorylation-regulated intranuclear localization of human cytomegalovirus pUL69 mediated by cyclin-dependent kinases (CDKs) and viral CDK orthologue pUL97. Journal of General Virology, 2016, 97, 144-151.	2.9	17
58	Cytomegalovirus pUL50 is the multi-interacting determinant of the core nuclear egress complex (NEC) that recruits cellular accessory NEC components. Journal of General Virology, 2016, 97, 1676-1685.	2.9	38
59	Therapeutics to prevent congenital cytomegalovirus during pregnancy: what is available now and in the future?. Microbiology Australia, 2015, 36, 156.	0.4	7
60	The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain. Viruses, 2015, 7, 4582-4601.	3.3	17
61	Crystal Structure of the Human Cytomegalovirus pUL50-pUL53 Core Nuclear Egress Complex Provides Insight into a Unique Assembly Scaffold for Virus-Host Protein Interactions. Journal of Biological Chemistry, 2015, 290, 27452-27458.	3.4	71
62	A Novel CDK7 Inhibitor of the Pyrazolotriazine Class Exerts Broad-Spectrum Antiviral Activity at Nanomolar Concentrations. Antimicrobial Agents and Chemotherapy, 2015, 59, 2062-2071.	3.2	90
63	Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorganic and Medicinal Chemistry, 2015, 23, 5452-5458.	3.0	97
64	New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. European Journal of Medicinal Chemistry, 2015, 97, 164-172.	5.5	104
65	The broad-spectrum antiinfective drug artesunate interferes with theÂcanonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antiviral Research, 2015, 124, 101-109.	4.1	48
66	Stimulatory effects of human cytomegalovirus tegument protein pp71 lead to increased expression of CCL2 (monocyte chemotactic protein-1) during infection. Journal of General Virology, 2015, 96, 1855-1862.	2.9	12
67	Human Cytomegalovirus Replication Is Strictly Inhibited by siRNAs Targeting UL54, UL97 or UL122/123 Gene Transcripts. PLoS ONE, 2014, 9, e97231.	2.5	22
68	Innate Nuclear Sensor IFI16 Translocates into the Cytoplasm during the Early Stage of <i>In Vitro</i> Human Cytomegalovirus Infection and Is Entrapped in the Egressing Virions during the Late Stage. Journal of Virology, 2014, 88, 6970-6982.	3.4	92
69	Differential Properties of Cytomegalovirus pUL97 Kinase Isoforms Affect Viral Replication and Maribavir Susceptibility. Journal of Virology, 2014, 88, 4776-4785.	3.4	26
70	Antiviral Effects of Artesunate on Polyomavirus BK Replication in Primary Human Kidney Cells. Antimicrobial Agents and Chemotherapy, 2014, 58, 279-289.	3.2	26
71	Antiviral Effects of Artesunate on JC Polyomavirus Replication in COS-7 Cells. Antimicrobial Agents and Chemotherapy, 2014, 58, 6724-6734.	3.2	33
72	Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus. Molecular and Cellular Proteomics, 2014, 13, 2132-2146.	3.8	79

#	Article	IF	CITATIONS
73	Using multi-channel level sets to measure the cytoplasmic localization of HCMV pUL97 in GFP-B-gal fusion constructs. Journal of Virological Methods, 2014, 199, 61-67.	2.1	2
74	The cytomegalovirus egress proteins pUL50 and pUL53 are translocated to the nuclear envelope through two distinct modes of nuclear import. Journal of General Virology, 2013, 94, 2056-2069.	2.9	39
75	Assessment of drug candidates for broad-spectrum antiviral therapy targeting cellular pyrimidine biosynthesis. Antiviral Research, 2013, 100, 640-648.	4.1	38
76	Chemically Engineered Sulfated Glucans from Rice Bran Exert Strong Antiviral Activity at the Stage of Viral Entry. Journal of Natural Products, 2013, 76, 2180-2188.	3.0	38
77	Profiling of the kinome of cytomegalovirus-infected cells reveals the functional importance of host kinases Aurora A, ABL and AMPK. Antiviral Research, 2013, 99, 139-148.	4.1	40
78	The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins. Viruses, 2013, 5, 3213-3230.	3.3	21
79	Specific Residues of a Conserved Domain in the N Terminus of the Human Cytomegalovirus pUL50 Protein Determine Its Intranuclear Interaction with pUL53. Journal of Biological Chemistry, 2012, 287, 24004-24016.	3.4	35
80	Nuclear import of isoforms of the cytomegalovirus kinase pUL97 is mediated by differential activity of NLS1 and NLS2 both acting through classical importin-1± binding. Journal of General Virology, 2012, 93, 1756-1768.	2.9	21
81	<i>In Vitro</i> Evaluation of the Activities of the Novel Anticytomegalovirus Compound AIC246 (Letermovir) against Herpesviruses and Other Human Pathogenic Viruses. Antimicrobial Agents and Chemotherapy, 2012, 56, 1135-1137.	3.2	94
82	A reporter system for Epstein-Barr virus (EBV) lytic replication: Anti-EBV activity of the broad anti-herpesviral drug artesunate. Journal of Virological Methods, 2011, 173, 334-339.	2.1	32
83	Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antiviral Research, 2011, 90, 183-186.	4.1	65
84	The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Research, 2011, 92, 364-368.	4.1	68
85	Two isoforms of the protein kinase pUL97 of human cytomegalovirus are differentially regulated in their nuclear translocation. Journal of General Virology, 2011, 92, 638-649.	2.9	33
86	Regulatory Roles of Protein Kinases in Cytomegalovirus Replication. Advances in Virus Research, 2011, 80, 69-101.	2.1	57
87	Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. Journal of General Virology, 2011, 92, 1519-1531.	2.9	30
88	Anti-Cytomegalovirus Activity of Sulfated Glucans Generated from a Commercial Preparation of Rice Bran. Antiviral Chemistry and Chemotherapy, 2010, 21, 85-95.	0.6	15
89	Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells. Journal of General Virology, 2010, 91, 2531-2541.	2.9	34
90	Novel Mode of Phosphorylation-triggered Reorganization of the Nuclear Lamina during Nuclear Egress of Human Cytomegalovirus. Journal of Biological Chemistry, 2010, 285, 13979-13989.	3.4	86

#	Article	IF	CITATIONS
91	Molecular targets for antiviral therapy of cytomegalovirus infections. Future Microbiology, 2009, 4, 731-742.	2.0	40
92	Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. Journal of General Virology, 2009, 90, 579-590.	2.9	81
93	Influenza A virus proteins PB1 and NS1 are subject to functionally important phosphorylation by protein kinase C. Journal of General Virology, 2009, 90, 1392-1397.	2.9	32
94	Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity. Journal of Biological Chemistry, 2009, 284, 8605-8613.	3.4	49
95	Sensitivity of human herpesvirus 6 and other human herpesviruses to the broad-spectrum antiinfective drug artesunate. Journal of Clinical Virology, 2009, 46, 24-28.	3.1	60
96	Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. Journal of General Virology, 2009, 90, 567-578.	2.9	46
97	Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Research, 2008, 79, 49-61.	4.1	68
98	The Antiviral Activities of Artemisinin and Artesunate. Clinical Infectious Diseases, 2008, 47, 804-811.	5.8	425
99	Artesunate as a Potent Antiviral Agent in a Patient with Late Drugâ€Resistant Cytomegalovirus Infection after Hematopoietic Stem Cell Transplantation. Clinical Infectious Diseases, 2008, 46, 1455-1457.	5.8	148
100	Mapping of a self-interaction domain of the cytomegalovirus protein kinase pUL97. Journal of General Virology, 2007, 88, 395-404.	2.9	40
101	Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. Journal of General Virology, 2007, 88, 2642-2650.	2.9	95
102	Analysis of the Structureâ^'Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservationâ€. Journal of Medicinal Chemistry, 2006, 49, 7044-7053.	6.4	55
103	The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Research, 2006, 69, 60-69.	4.1	134
104	Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Research, 2006, 72, 197-206.	4.1	132
105	Recent developments in anti-herpesviral therapy based on protein kinase inhibitors. , 2006, , 351-371.		1
106	Cellular p32 Recruits Cytomegalovirus Kinase pUL97 to Redistribute the Nuclear Lamina. Journal of Biological Chemistry, 2005, 280, 33357-33367.	3.4	158
107	Identification of Inhibitors for a Virally Encoded Protein Kinase by 2 Different Screening Systems: In Vitro Kinase Assay and In-Cell Activity Assay. Journal of Biomolecular Screening, 2005, 10, 36-45.	2.6	10
108	Novel Chemical Class of pUL97 Protein Kinase-Specific Inhibitors with Strong Anticytomegaloviral Activity. Antimicrobial Agents and Chemotherapy, 2004, 48, 4154-4162.	3.2	136

#	Article	IF	CITATIONS
109	RICK Activates a NF-κB-dependent Anti-human Cytomegalovirus Response. Journal of Biological Chemistry, 2004, 279, 9642-9652.	3.4	31
110	Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radical Biology and Medicine, 2004, 37, 998-1009.	2.9	233
111	The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology, 2003, 311, 60-71.	2.4	108
112	Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. Journal of General Virology, 2002, 83, 1013-1023.	2.9	70
113	Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. Journal of Molecular Medicine, 2002, 80, 233-242.	3.9	157
114	Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. Journal of General Virology, 2001, 82, 1439-1450.	2.9	72
115	Recombinant Green Fluorescent Protein-Expressing Human Cytomegalovirus as a Tool for Screening Antiviral Agents. Antimicrobial Agents and Chemotherapy, 2000, 44, 1588-1597.	3.2	130
116	Hepatitis B virus surface antigen as a reporter of promoter activity. Gene, 1989, 81, 109-117.	2.2	16