Tiziana Vaisitti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematological Oncology, 2022, 40, 41-48.	0.8	5
2	Adult-onset CblC deficiency: a challenging diagnosis involving different adult clinical specialists. Orphanet Journal of Rare Diseases, 2022, 17, 33.	1.2	22
3	A new taxonomy for splenic marginal zone lymphoma. Blood, 2022, 139, 644-645.	0.6	2
4	Novel Approaches for the Treatment of Patients with Richter's Syndrome. Current Treatment Options in Oncology, 2022, 23, 526-542.	1.3	4
5	Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Letters, 2022, 536, 215645.	3.2	7
6	Targeting of the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica, 2021, 106, 1343-1353.	1.7	12
7	B-cell receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter transformation. Blood, 2021, 138, 1053-1066.	0.6	33
8	MO059COLEC10 AND 3MC SYNDROME: EXPANDING THE GENOTYPIC AND PHENOTYPIC SPECTRUM OF A VERY RARE DISEASE. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
9	ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient–derived xenograft mouse models. Blood, 2021, 137, 3365-3377.	0.6	47
10	Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models. Blood, 2021, 137, 3378-3389.	0.6	24
11	HLA-DRB1 mismatch-based identification of donor-derived cell free DNA (dd-cfDNA) as a marker of rejection in heart transplant recipients: A single-institution pilot study. Journal of Heart and Lung Transplantation, 2021, 40, 794-804.	0.3	7
12	HLA and AB0 Polymorphisms May Influence SARS-CoV-2 Infection and COVID-19 Severity. Transplantation, 2021, 105, 193-200.	0.5	81
13	A novel COLEC10 mutation in a child with 3MC syndrome. European Journal of Medical Genetics, 2021, 64, 104374.	0.7	3
14	The frequency of rare and monogenic diseases in pediatric organ transplant recipients in Italy. Orphanet Journal of Rare Diseases, 2021, 16, 374.	1.2	0
15	The frequency of rare and monogenic diseases in pediatric organ transplant recipients in Italy. Orphanet Journal of Rare Diseases, 2021, 16, 374.	1.2	5
16	The Tigit/CD226/CD155 Immunomodulatory Axis Is Deregulated in CLL and Contributes to B-Cell Anergy. Blood, 2021, 138, 3718-3718.	0.6	2
17	Anti-CD37 Alpha-Amanitin Conjugated Antibodies As Therapeutic Weapons for Richter's Syndrome. Blood, 2021, 138, 791-791.	0.6	4
18	Evidence of a Synergistic Cross-Talk between the B Cell Receptor (BCR) and Nicotinamide Phosphoribosyl Transferase (NAMPT) in Richter's Syndrome Patient-Derived Xenograft Models: Therapeutic Implications. Blood, 2021, 138, 250-250.	0.6	0

#	Article	IF	CITATIONS
19	Bidirectional linkage between the B-cell receptor and NOTCH1 in chronic lymphocytic leukemia and in Richter's syndrome: therapeutic implications. Leukemia, 2020, 34, 462-477.	3.3	24
20	Clinical exome sequencing is a powerful tool in the diagnostic flow of monogenic kidney diseases: an Italian experience. Journal of Nephrology, 2020, 34, 1767-1781.	0.9	11
21	P0051NOVEL AND KNOWN MUTATIONS IDENTIFIED BY CLINICAL EXOME SEQUENCING FOR THE DIAGNOSIS OF POLYCYSTIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
22	P0056USE OF CLINICAL EXOME SEQUENCING IN THE DIAGNOSTIC FLOW OF MONOGENIC KIDNEY DISEASES: THE PIEDMONT EXPERIENCE. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	1
23	Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 2504.	1.7	4
24	NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant Phenotype Plasticity in Melanoma. Cancers, 2020, 12, 3855.	1.7	17
25	Immune Response Dysfunction in Chronic Lymphocytic Leukemia: Dissecting Molecular Mechanisms and Microenvironmental Conditions. International Journal of Molecular Sciences, 2020, 21, 1825.	1.8	80
26	Unusual Presentation of Remethylation Disorders: A Case of Later Onset CblE Deficiency. Acta Scientific Paediatrics, 2020, 4, 11-14.	0.1	0
27	Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Frontiers in Immunology, 2019, 10, 2301.	2.2	28
28	Subcellular Characterization of Nicotinamide Adenine Dinucleotide Biosynthesis in Metastatic Melanoma by Using Organelle-Specific Biosensors. Antioxidants and Redox Signaling, 2019, 31, 1150-1165.	2.5	9
29	The Dual PI3K-δ/γ Inhibitor Duvelisib in Combination with the Bcl-2 Inhibitor Venetoclax Shows Promising Responses in Richter Syndrome-PDX Models. Blood, 2019, 134, 2862-2862.	0.6	1
30	Vls-101 Is a Novel Therapeutic Antibody-Drug Conjugate (ADC) Targeting Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1) in Richter's Syndrome (RS). Blood, 2019, 134, 2856-2856.	0.6	8
31	CD79b Expression in Richter's Transformation. Blood, 2019, 134, 4279-4279.	0.6	3
32	Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma. Journal of the National Cancer Institute, 2018, 110, 290-303.	3.0	32
33	The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Frontiers in Oncology, 2018, 8, 550.	1.3	52
34	Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche?. International Journal of Molecular Sciences, 2018, 19, 1167.	1.8	8
35	Novel Richter Syndrome Xenograft Models to Study Genetic Architecture, Biology, and Therapy Responses. Cancer Research, 2018, 78, 3413-3420.	0.4	31
36	Targeting the Adenosinergic Axis in the Eμ-TCL1 Chronic Lymphocytic Leukemia Mouse Model Offers Novel Therapeutic Opportunities. Blood, 2018, 132, 240-240.	0.6	0

#	Article	IF	CITATIONS
37	Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia, 2017, 31, 1882-1893.	3.3	52
38	Macitentan, a double antagonist of endothelin receptors, efficiently impairs migration and microenvironmental survival signals in chronic lymphocytic leukemia. Oncotarget, 2017, 8, 90013-90027.	0.8	5
39	Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-l®B inhibitor. Haematologica, 2017, 102, 1878-1889.	1.7	32
40	Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Advances, 2016, 1, 47-61.	2.5	48
41	Mutations in NOTCH1 PEST Domain Orchestrate CCL19-Driven Homing of Chronic Lymphocytic Leukemia (CLL) Cells By Modulating the Tumor Suppressor Gene DUSP22. Blood, 2016, 128, 969-969.	0.6	0
42	Targeting Cellular Metabolism and Survival in Chronic Lymphocytic Leukemia and Richter Syndrome Cells By a Novel NF-Kb Inhibitor. Blood, 2016, 128, 304-304.	0.6	0
43	Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood, 2015, 125, 111-123.	0.6	151
44	The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia, 2015, 29, 356-368.	3.3	33
45	SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response. Journal of Clinical Investigation, 2015, 126, 181-194.	3.9	44
46	Abstract 3192: Cooperation between adenosinergic and hypoxic signals in shaping chronic lymphocytic leukemia microenvironment. , 2015, , .		0
47	Adenosine Signaling Mediates Hypoxic Responses in the Chronic Lymphocytic Leukemia Microenvironment. Blood, 2015, 126, 4145-4145.	0.6	1
48	SLAMF1/CD150 Activates Autophagy in Chronic Lymphocytic Leukemia Cells, Modulating Chemotaxis and Responses to Therapy. Blood, 2015, 126, 1728-1728.	0.6	0
49	Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia, 2014, 28, 1060-1070.	3.3	105
50	Extracellular Nicotinamide Phosphoribosyltransferase (NAMPT) Shapes the CLL Microenvironment Promoting Macrophage M2 Polarization Via a Non-Enzymatic Mechanism. Blood, 2014, 124, 3316-3316.	0.6	3
51	Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options. Cancer Letters, 2013, 328, 27-35.	3.2	16
52	CD38 signals upregulate expression and functions of matrix metalloproteinase-9 in chronic lymphocytic leukemia cells. Leukemia, 2013, 27, 1177-1181.	3.3	11
53	Multiple Metamorphoses of CD38 from Prognostic Marker to Disease Modifier to Therapeutic Target in Chronic Lymphocytic Leukemia. Current Topics in Medicinal Chemistry, 2013, 13, 2955-2964.	1.0	4
54	Abstract 2302: The extracellular form of NAMPT contributes to creating a proinflammatory environment in chronic lymphocytic leukemia , 2013, , .		0

#	Article	IF	CITATIONS
55	Functional Effects Of NOTCH1 Mutations In Chronic Lymphocytic Leukemia Patients. Blood, 2013, 122, 4117-4117.	0.6	0
56	The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia, 2012, 26, 1301-1312.	3.3	78
57	Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood, 2012, 119, 2854-2862.	0.6	257
58	The coding genome of splenic marginal zone lymphoma: activation of <i>NOTCH2</i> and other pathways regulating marginal zone development. Journal of Experimental Medicine, 2012, 209, 1537-1551.	4.2	363
59	Slamf-1/CD150 Is a Signaling Receptor Expressed by a Subset of Chronic Lymphocytic Leukemia Patients Characterized by a Favorable Prognosis. Blood, 2012, 120, 1770-1770.	0.6	1
60	Abstract 5170: Metabolism and cancer: The CD38-NAMPT connection in chronic lymphocytic leukemia. , 2012, , .		0
61	Abstract 1348: CD38 regulates homing and engraftment in a mouse model of CLL. , 2012, , .		0
62	Circulating CLL Cells Expressing CD49d Display a Phospho-Proteomic Profile Consistent with a Constitutive Receptor Engagement by Blood-Borne Ligands. Blood, 2012, 120, 930-930.	0.6	0
63	The Elastin Microfibril Interfacer-1 (EMILIN-1) Is a Ligand for CD49d in Chronic Lymphocytic Leukemia Cells. Blood, 2012, 120, 1772-1772.	0.6	0
64	2.35 CD73-Generated Extracellular Adenosine Creates Microenvironmental Conditions Favoring Growth and Survival of Chronic Lymphocytic Leukemia Cells. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S181.	0.2	0
65	Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood, 2011, 118, 6904-6908.	0.6	342
66	CD38 in Chronic Lymphocytic Leukemia: From Bench to Bedside?. Mini-Reviews in Medicinal Chemistry, 2011, 11, 503-507.	1.1	13
67	Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma. Blood, 2011, 118, 4930-4934.	0.6	176
68	CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood, 2011, 118, 6141-6152.	0.6	122
69	A variant of the <i>LRP4</i> gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome. British Journal of Haematology, 2011, 152, 284-294.	1.2	28
70	E2A is a transcriptional regulator of CD38 expression in chronic lymphocytic leukemia. Leukemia, 2011, 25, 479-488.	3.3	41
71	NAD ⁺ â€metabolizing ectoâ€enzymes shape tumor–host interactions: The chronic lymphocytic leukemia model. FEBS Letters, 2011, 585, 1514-1520.	1.3	23
72	Nicotinamide Blocks Proliferation and Induces Apoptosis of Chronic Lymphocytic Leukemia Cells through Activation of the p53/miR-34a/SIRT1 Tumor Suppressor Network. Cancer Research, 2011, 71, 4473-4483.	0.4	153

#	Article	IF	CITATIONS
73	Abstract 389: CD38 is part of a network of molecules regulating chemotaxis and homing of CLL cells. , 2011, , .		0
74	Abstract 1542: CD38 is physically associated with CD49d and enhances CD49d-mediated adhesion of B-Cell chronic lymphocytic leukemia cells. , 2011, , .		0
75	Abstract 2630: Nicotinamide activates the p53/miR-34a/SIRT1 tumor suppressor network leading to apoptosis of chronic lymphocytic leukemia cells. , 2011, , .		0
76	CD73-Generated Extracellular Adenosine Creates Microenvironmental Conditions Favoring Growth and Survival of Chronic Lymphocytic Leukemia Cells. Blood, 2011, 118, 621-621.	0.6	0
77	CD38 Regulates Homing and Engraftment of CLL Cells,. Blood, 2011, 118, 3873-3873.	0.6	0
78	Alteration of BIRC3 and Multiple Other NF-κB Pathway Genes in Splenic Marginal Zone Lymphoma. Blood, 2011, 118, 264-264.	0.6	1
79	CD38 as a molecular compass guiding topographical decisions of chronic lymphocytic leukemia cells. Seminars in Cancer Biology, 2010, 20, 416-423.	4.3	28
80	CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia, 2010, 24, 958-969.	3.3	89
81	CD38/CD31 Interactions Activate Genetic Pathways Leading to Proliferation and Migration in Chronic Lymphocytic Leukemia Cells. Molecular Medicine, 2010, 16, 87-91.	1.9	68
82	E2A Transcriptionally Regulates CD38 Expression In Chronic Lymphocytic Leukemia. Blood, 2010, 116, 3599-3599.	0.6	0
83	Nicotinamide Promotes Apoptosis In Chronic Lymphocytic Leukemia through Activation of the p53/Mir-34a/SIRT1 Tumor Suppressor Network. Blood, 2010, 116, 4627-4627.	0.6	0
84	CD38 Expression Marks CLL Cells with Invasive Properties. Blood, 2010, 116, 2422-2422.	0.6	0
85	CD38 CD49d Are Physically and Functionally Associated in B-Cell Chronic Lymphocytic Leukemia Cells Blood, 2009, 114, 357-357.	0.6	23
86	CD38 Induces Homing of Chronic Lymphocytic Leukemia Cells to the Lymphoid Organs through a Functional Interplay with CXCR4 Blood, 2009, 114, 2328-2328.	0.6	0
87	CD38 at the junction between prognostic marker and therapeutic target. Trends in Molecular Medicine, 2008, 14, 210-218.	3.5	62
88	Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology. Physiological Reviews, 2008, 88, 841-886.	13.1	727
89	Human CD38 Is a Potential Therapeutic Target for Sekected Chronic Lymphocytic Leukemia cases Blood, 2008, 112, 2096-2096.	0.6	0
90	CD38/CD19: a lipid raft–dependent signaling complex in human B cells. Blood, 2007, 109, 5390-5398.	0.6	105

#	Article	IF	CITATIONS
91	CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood, 2007, 110, 4012-4021.	0.6	149
92	Prognostic significance of combined analysis of ZAP-70 and CD38 in chronic lymphocytic leukemia. American Journal of Hematology, 2007, 82, 787-791.	2.0	39
93	CD38 and ZAP-70 Mark Chronic Lymphocytic Leukemia (CLL) Cells with High Migratory Potential and Regulate Chemotaxis Blood, 2007, 110, 4684-4684.	0.6	0
94	CD38 and CD157 as Receptors of the Immune System: A Bridge Between Innate and Adaptive Immunity. Molecular Medicine, 2006, 12, 334-341.	1.9	66
95	CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood, 2006, 107, 2392-2399.	0.6	123
96	In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood, 2006, 108, 1135-1144.	0.6	132
97	CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood, 2005, 105, 3042-3050.	0.6	194
98	CD38 Ligation in B-Chronic Lymphocytic Leukemia Cells Induces Sequential Tyrosine Phosphorylation of ZAP70, PLC- γ2 and ERK1/2 Proteins Blood, 2004, 104, 959-959.	0.6	4
99	HLA and AB0 Polymorphisms Influence SARS-CoV-2 Infection and COVID-19 Severity. SSRN Electronic Journal, 0, , .	0.4	0