Ori Cheshnovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011884/publications.pdf

Version: 2024-02-01

69 papers

3,000 citations

186265 28 h-index 54 g-index

69 all docs 69 docs citations

69 times ranked 2623 citing authors

#	Article	IF	Citations
1	Photoelectron spectroscopy of Clâ^', Brâ^', and Iâ^' solvated in water clusters. Journal of Chemical Physics, 1994, 101, 9344-9353.	3.0	311
2	Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotechnology, 2008, 3, 727-732.	31.5	234
3	Photoelectron spectroscopy of iodine anion solvated in water clusters. Journal of Chemical Physics, 1991, 95, 9416-9419.	3.0	159
4	METAL TO INSULATOR TRANSITIONS IN CLUSTERS. Annual Review of Physical Chemistry, 2005, 56, 549-580.	10.8	155
5	Proton transfer in neutral gasâ€phase clusters: αâ€Naphtholâ‹(NH3)n. Journal of Chemical Physics, 1988, 88, 4127-4138.	3.0	150
6	Photoelectron spectroscopy of the `missing' hydrated electron clusters (H2O) \hat{a} 'n, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and $\hat{a}@3/11$. Chemical Physics Letters, 1998, 297, 90-96.	2.6	142
7	Direct Observation of Band-Gap Closure in Mercury Clusters. Physical Review Letters, 1998, 81, 3836-3839.	7.8	121
8	Real-time single-molecule imaging of quantum interference. Nature Nanotechnology, 2012, 7, 297-300.	31.5	115
9	Electronic Relaxation Dynamics of Water Cluster Anions. Journal of the American Chemical Society, 2005, 127, 15283-15295.	13.7	111
10	The solvation of Clâ ⁻ , Brâ ⁻ , and Iâ ⁻ in acetonitrile clusters: Photoelectron spectroscopy and molecular dynamics simulations. Journal of Chemical Physics, 1996, 105, 2675-2685.	3.0	103
11	Proton transfer reactions in neutral gas-phase clusters: 1-Naphthol with H2O, D2O, CH3OH, NH3 and piperidine. Chemical Physics Letters, 1988, 144, 317-323.	2.6	102
12	Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas. Nano Letters, 2014, 14, 6685-6692.	9.1	100
13	Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene. Nano Letters, 2015, 15, 5944-5949.	9.1	85
14	Excited-state proton transfer in neutral microsolvent clusters: α-naphthol·(NH3)n. Chemical Physics Letters, 1985, 121, 1-8.	2.6	77
15	Emission Spectra of Deep Impurity States in Solid and Liquid Rare Gas Alloys. Journal of Chemical Physics, 1972, 57, 4628-4632.	3.0	62
16	Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum. Nano Letters, 2015, 15, 5604-5608.	9.1	62
17	Electronic energy transfer in rare gas mixtures. Journal of Chemical Physics, 1973, 59, 3301-3307.	3.0	59
18	Temperature dependence of rare gas molecular emission in the vacuum ultraviolet. Chemical Physics Letters, 1972, 15, 475-479.	2.6	57

#	Article	IF	Citations
19	Circular Dichroism of Single Particles. ACS Photonics, 2018, 5, 2151-2159.	6.6	45
20	Time-resolved relaxation dynamics of Hgnâ^' (11⩽n⩽16,n=18) clusters following intraband excitation a eV. Journal of Chemical Physics, 2004, 121, 10015-10025.	at 1.5 3.0	42
21	An atomically thin matter-wave beamsplitter. Nature Nanotechnology, 2015, 10, 845-848.	31.5	41
22	Dielectron Attachment and Hydrogen Evolution Reaction in Water Clusters. Journal of Physical Chemistry A, 2011, 115, 7378-7391.	2.5	37
23	Super-Resolution in Label-Free Photomodulated Reflectivity. Nano Letters, 2015, 15, 1362-1367.	9.1	37
24	Vortex beams of atoms and molecules. Science, 2021, 373, 1105-1109.	12.6	37
25	The decay of triplet pyrazine in supersonic jets. Journal of Chemical Physics, 1989, 91, 7331-7339.	3.0	36
26	Photodetachment studies of extended excited states in lâ^'Xen clusters (n=1â€"54). Journal of Chemical Physics, 1999, 110, 6288-6297.	3.0	36
27	The solvation of iodine anions in water clusters: PES studies. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 98-100.	1.0	34
28	Bound Delocalized Excited States inlâ^'XenClusters. Physical Review Letters, 1997, 79, 3391-3394.	7.8	32
29	Charge transfer excitations in the photoelectron spectrum of Clâ^'NH3: Experiment and calculation. Journal of Chemical Physics, 1993, 99, 6201-6204.	3.0	28
30	In search of multipath interference using large molecules. Science Advances, 2017, 3, e1602478.	10.3	26
31	Comments on heteronuclear electronically excited rare gas diatomic molecules. Chemical Physics Letters, 1973, 22, 23-25.	2.6	24
32	A Complete Scheme for Creating Predefined Networks of Individual Carbon Nanotubes. Nano Letters, 2007, 7, 2666-2671.	9.1	24
33	Emission spectra of xenon impurity states in solid and liquid krypton. Journal of Chemical Physics, 1973, 59, 5554-5561.	3.0	23
34	A Green's function approach to modeling molecular diffraction in the limit of ultraâ€thin gratings. Annalen Der Physik, 2015, 527, 580-591.	2.4	20
35	Determination of Handedness in a Single Chiral Nanocrystal <i>via</i> Circularly Polarized Luminescence. ACS Nano, 2019, 13, 601-608.	14.6	20
36	The decay of triplet pyrazine and methylpyrazine in supersonic jets. Substitution effects. Journal of Chemical Physics, 1992, 96, 8095-8103.	3.0	17

#	Article	IF	Citations
37	Large Anisotropic Conductance and Band Gap Fluctuations in Nearly Round-Shape Bismuth Nanoparticles. Nano Letters, 2012, 12, 1087-1091.	9.1	16
38	Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference. Physical Review A, 2018, 97, .	2.5	16
39	Surface ejection of electrons by laser-excited metastables of anthracene derivatives. Chemical Physics Letters, 1986, 130, 53-58.	2.6	14
40	Critical Size for Intracluster Proton Transfer from Water to an Anion. Angewandte Chemie - International Edition, 2008, 47, 6272-6274.	13.8	14
41	PySight: plug and play photon counting for fast continuous volumetric intravital microscopy. Optica, 2018, 5, 1104.	9.3	14
42	Transition from a Bloch-Wilson to a free-electron density of states in Znnâ^' clusters. Journal of Chemical Physics, 2005, 123, 221102.	3.0	12
43	Resolution enhancement in the magnetic bottle photoelectron spectrometer by impulse electron deceleration. Review of Scientific Instruments, 2001, 72, 2543-2549.	1.3	10
44	Optical study of the metal-insulator transition in the mercury-xenon system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1979, 71, 255-258.	2.1	9
45	Long radiative lifetimes of SO2 in a collision-free supersonic molecular beam. Chemical Physics Letters, 1986, 130, 487-492.	2.6	9
46	Electron Transfer and Charge Separation in Clusters. Advances in Chemical Physics, 2007, , 265-302.	0.3	9
47	Timeâ€resolved circularly polarized luminescence of Eu ³⁺ â€based systems. Chirality, 2021, 33, 124-133.	2.6	9
48	Collisional quenching of resonance states of rare gases. Chemical Physics Letters, 1974, 29, 310-313.	2.6	8
49	Triplet selectivity in surface ejection of electrons by laser-excited metastables of aniline. Chemical Physics Letters, 1988, 146, 216-220.	2.6	8
50	The branching of nonradiative processes in isoquinoline. Journal of Chemical Physics, 1989, 91, 3532-3538.	3.0	8
51	Molecular Control of Structural Dynamics and Conductance Switching in Bismuth Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 22218-22223.	3.1	8
52	Electrically controlled quantum reflection. Physical Review A, 2017, 95, .	2.5	8
53	The decay of triplet pyrazine and pyrazineâ€D4 in supersonic jets: Isotope effects. Journal of Chemical Physics, 1994, 101, 3649-3655.	3.0	7
54	Super resolution methodology based on temperature dependent Raman scattering. Optics Express, 2015, 23, 17929.	3.4	7

#	Article	IF	CITATIONS
55	On the role of the electric dipole moment in the diffraction of biomolecules at nanomechanical gratings. Fortschritte Der Physik, 2017, 65, 1600025.	4.4	7
56	Three attempts and one success in addressing the bandgap closure in mercury clusters. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1427-1436.	0.6	6
57	Auger recombination dynamics in clusters. Chemical Physics, 2008, 350, 69-74.	1.9	6
58	Detection of Microcalcification in Tissue by Raman Spectroscopy. Cardiovascular Engineering and Technology, 2011, 2, 228-233.	1.6	6
59	Triplet State Interrogation in Supersonic Beams by Surface Electron Ejection. Israel Journal of Chemistry, 1990, 30, 13-22.	2.3	5
60	Pure sinusoidal photo-modulation using an acousto-optic modulator. Review of Scientific Instruments, 2018, 89, 123102.	1.3	5
61	Two Photon Detachment of d Electrons and Auger Emission in Photoelectron Studies of Hgn-Clustersâ€. Journal of Physical Chemistry C, 2007, 111, 17725-17729.	3.1	4
62	A combined mass gate–energy discriminator. Review of Scientific Instruments, 1997, 68, 4625-4626.	1.3	3
63	Auger recombination and excited state relaxation dynamics in HgnⰠ(n=9–20) anion clusters. Journal of Chemical Physics, 2009, 130, 231103.	3.0	3
64	Single-, double-, and triple-slit diffraction of molecular matter waves. American Journal of Physics, 2021, 89, 1132-1138.	0.7	2
65	Classification of tissue biopsies by Raman spectroscopy guided by quantitative phase imaging and its application to bladder cancer. Journal of Biophotonics, 2022, 15, e202200009.	2.3	2
66	A new action photoelectron spectroscopy for anions. Journal of Chemical Physics, 2005, 122, 141101.	3.0	1
67	Foreword by the Guest Editors: Perspectives in the Chemical Sciences (Honoring Prof. Joshua Jortner) PART A. Israel Journal of Chemistry, 2003, 43, NA-NA.	2.3	0
68	Foreword by the Guest Editors: Perspectives in the Chemical Sciences (Honoring Prof. Joshua Jortner) PART B. Israel Journal of Chemistry, 2004, 44, NA-NA.	2.3	0
69	Probing the Dynamic Fluctuations of Bismuth Nanoparticles by Thermovoltage Measurements. Journal of Physical Chemistry C, 2016, 120, 18925-18930.	3.1	0