Henry Jay Forman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401166/publications.pdf Version: 2024-02-01

260 papers	25,281 citations	11908 72 h-index	⁸⁴³³ 152 g-index
271	271	271	32939
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review. Environment International, 2022, 158, 106932.	4.8	10
2	On "Biological effects of the superoxide radical" by Irwin Fridovich. Archives of Biochemistry and Biophysics, 2022, 726, 109117.	1.4	3
3	Iron Speciation in Respirable Particulate Matter and Implications for Human Health. Environmental Science & Technology, 2022, 56, 7006-7016.	4.6	9
4	Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats. Antioxidants, 2022, 11, 927.	2.2	4
5	Archives of Biochemistry and Biophysics: 80th Anniversary. Archives of Biochemistry and Biophysics, 2022, , 109295.	1.4	0
6	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	5.1	356
7	Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods. Atmospheric Environment, 2021, 245, 117988.	1.9	16
8	Tricuspid regurgitant jet velocity and myocardial tissue Doppler parameters predict mortality in a cohort of patients with sickle cell disease spanning from pediatric to adult age groups ―revisiting this controversial concept after 16 years of additional evidence. American Journal of Hematology, 2021, 96, 31-39	2.0	10
9	Age-related alteration in HNE elimination enzymes. Archives of Biochemistry and Biophysics, 2021, 699, 108749.	1.4	7
10	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Advances in Alzheimer's Disease, 2021, , .	0.2	0
11	Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 2021, 20, 689-709.	21.5	975
12	Urban Air Pollution Nanoparticles from LosÂAngeles: Recently Decreased Neurotoxicity. Journal of Alzheimer's Disease, 2021, 82, 307-316.	1.2	8
13	Individual red blood cell nitric oxide production in sickle cell anemia: Nitric oxide production is increased and sickle shaped cells have unique morphologic change compared to discoid cells. Free Radical Biology and Medicine, 2021, 171, 143-155.	1.3	3
14	Inhibiting Bach1 enhanced the activation of Nrf2 signaling and the degradation of HNE in response to oxidative stress Alzheimer's and Dementia, 2021, 17 Suppl 3, e053235.	0.4	0
15	Reductions in ApoE and GPx4 highlight the Alzheimer's disease lipid raft vulnerability Alzheimer's and Dementia, 2021, 17 Suppl 3, e054511.	0.4	0
16	Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biology, 2020, 28, 101304.	3.9	22
17	Traffic-related air pollutants (TRAP-PM) promote neuronal amyloidogenesis through oxidative damage to lipid rafts. Free Radical Biology and Medicine, 2020, 147, 242-251.	1.3	56
18	Down regulation of glutathione and glutamate cysteine ligase in the inflammatory response of macrophages. Free Radical Biology and Medicine, 2020, 158, 53-59.	1.3	8

#	Article	IF	CITATIONS
19	Reduction of lipid peroxidase levels in EFAD mouse model. Alzheimer's and Dementia, 2020, 16, e044143.	0.4	0
20	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Journal of Alzheimer's Disease, 2020, 76, 773-797.	1.2	27
21	Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environment International, 2020, 136, 105510.	4.8	64
22	Beyond repression of Nrf2: An update on Keap1. Free Radical Biology and Medicine, 2020, 157, 63-74.	1.3	144
23	Detection of HNE Modification of Proteins in Aging Mouse Tissues: A Western Blot-Based Approach. Methods in Molecular Biology, 2020, 2144, 237-244.	0.4	3
24	Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-Nfkb interactions. ELife, 2020, 9, .	2.8	22
25	Assays for Thiols and Modifications. Biological Magnetic Resonance, 2020, , 3-6.	0.4	0
26	Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents. Free Radical Biology and Medicine, 2019, 141, 408-415.	1.3	14
27	Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radical Biology and Medicine, 2019, 145, 33-41.	1.3	25
28	Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Archives of Biochemistry and Biophysics, 2019, 672, 108074.	1.4	16
29	Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing?. Free Radical Biology and Medicine, 2019, 134, 708-714.	1.3	19
30	Surface characterization and chemical speciation of adsorbed iron(<scp>iii</scp>) on oxidized carbon nanoparticles. Environmental Sciences: Processes and Impacts, 2019, 21, 548-563.	1.7	4
31	Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biology, 2019, 24, 101194.	3.9	17
32	Oxidation of Peroxiredoxin 6 in the Presence of GSH Increases its Phospholipase A2 Activity at Cytoplasmic pH. Antioxidants, 2019, 8, 4.	2.2	15
33	Nrf2-related gene expression is impaired during a glucose challenge in type II diabetic rat hearts. Free Radical Biology and Medicine, 2019, 130, 306-317.	1.3	14
34	A critical review of assays for hazardous components of air pollution. Free Radical Biology and Medicine, 2018, 117, 202-217.	1.3	82
35	Redox control of cancer cell destruction. Redox Biology, 2018, 16, 59-74.	3.9	119
36	Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (â€~vehicular smog'). Free Radical Biology and Medicine, 2018, 121, 86-97.	1.3	36

#	Article	IF	CITATIONS
37	Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biology, 2018, 14, 35-40.	3.9	113
38	Aging effects on basal and lipopolysaccharide inducible expression of antioxidant and inflammatory genes in human blood monocytes. Free Radical Biology and Medicine, 2018, 120, S59.	1.3	1
39	Rust never sleeps: The continuing story of the Iron Bolt. Free Radical Biology and Medicine, 2018, 124, 353-357.	1.3	1
40	Introduction for the special issue on the chemistry of redox signaling. Archives of Biochemistry and Biophysics, 2017, 617, 1-2.	1.4	0
41	Low dose inflammatory potential of silica particles in human-derived THP-1 macrophage cell culture studies – Mechanism and effects of particle size and iron. Chemico-Biological Interactions, 2017, 272, 160-171.	1.7	15
42	Delayed Nrf2-regulated antioxidant gene induction in response to silica nanoparticles. Free Radical Biology and Medicine, 2017, 108, 311-319.	1.3	31
43	Temporal changes in glutathione biosynthesis during the lipopolysaccharide-induced inflammatory response of THP-1 macrophages. Free Radical Biology and Medicine, 2017, 113, 304-310.	1.3	22
44	Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicology in Vitro, 2017, 42, 292-298.	1.1	96
45	Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Archives of Biochemistry and Biophysics, 2017, 617, 145-154.	1.4	44
46	Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification. Archives of Biochemistry and Biophysics, 2017, 617, 26-37.	1.4	66
47	4-hydroxynonenal-mediated signaling and aging. Free Radical Biology and Medicine, 2017, 111, 219-225.	1.3	78
48	Age related alteration of the antioxidant/ inflammatory axis in human lung epithelial cells in response to nanoparticle challenge. Free Radical Biology and Medicine, 2017, 112, 59.	1.3	1
49	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
50	Glucose Suppresses Nrf2 Translocation and Increases Glutathione Levels in Diabetic Rat Hearts. Free Radical Biology and Medicine, 2017, 112, 156-157.	1.3	0
51	Association of GCLM -588C/T and GCLC -129T/C Promoter Polymorphisms of Genes Coding the Subunits of Glutamate Cysteine Ligase with Ischemic Heart Disease Development in Kazakhstan Population. Disease Markers, 2017, 2017, 1-8.	0.6	9
52	Interactions between Nrf2 Activation and Glutathione in the Maintenance of Redox Homeostasis. , 2017, , 409-421.		0
53	Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. Environmental Health Perspectives, 2016, 124, 1537-1546.	2.8	127
54	Redox signaling: An evolution from free radicals to aging. Free Radical Biology and Medicine, 2016, 97, 398-407.	1.3	130

#	Article	IF	CITATIONS
55	Tribute issue: Helmut Sies and oxidative stress: Venit, vidit, vicit. Archives of Biochemistry and Biophysics, 2016, 595, 2.	1.4	2
56	Glutathione – From antioxidant to post-translational modifier. Archives of Biochemistry and Biophysics, 2016, 595, 64-67.	1.4	49
57	What is the concentration of hydrogen peroxide in blood and plasma?. Archives of Biochemistry and Biophysics, 2016, 603, 48-53.	1.4	234
58	Redox homeostasis: The Golden Mean of healthy living. Redox Biology, 2016, 8, 205-215.	3.9	300
59	Commentary on "Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels―by Chapple et al Free Radical Biology and Medicine, 2016, 92, 163-164.	1.3	1
60	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	1.3	48
61	Shear-Mediated Erythrocyte Nitric Oxide Production Is Differentially Regulated in Patients with Sickle Cell Disease. Blood, 2016, 128, 1301-1301.	0.6	0
62	Oxygen Metabolism in the Lung. , 2015, , 355-374.		0
63	Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology and Medicine, 2015, 88, 314-336.	1.3	644
64	TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism. Archives of Biochemistry and Biophysics, 2015, 568, 1-7.	1.4	30
65	Glutathione peroxidase 8 is transcriptionally regulated by HIFα and modulates growth factor signaling in HeLa cells. Free Radical Biology and Medicine, 2015, 81, 58-68.	1.3	28
66	Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder. Free Radical Biology and Medicine, 2015, 86, 156-165.	1.3	19
67	Introduction to Special Issue on â€~Nrf2 Regulated Redox Signaling and Metabolism in Physiology and Medicine. Free Radical Biology and Medicine, 2015, 88, 91-92.	1.3	25
68	Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2066-2074.	1.8	44
69	4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B. Free Radical Biology and Medicine, 2015, 89, 701-707.	1.3	10
70	Even free radicals should follow some rules: A Guide to free radical research terminology and methodology. Free Radical Biology and Medicine, 2015, 78, 233-235.	1.3	241
71	Infusion of Pegylated Bovine Carboxyhemoglobin (PEG-COHb) Is Associated with Rapid Reversal of Progressive Acute Chest Syndrome in a Jehovah's Witness Patient with Hemoglobin SC Sickle Cell Disease. Blood, 2015, 126, 4541-4541.	0.6	2
72	Para-hormesis: An innovative mechanism for the health protection brought by antioxidants in wine. Nutrition and Aging (Amsterdam, Netherlands), 2014, 2, 117-124.	0.3	6

#	Article	IF	CITATIONS
73	Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells. Science Signaling, 2014, 7, ra31.	1.6	144
74	TGFβ1 rapidly activates Src through a non-canonical redox mechanism. Free Radical Biology and Medicine, 2014, 75, S4.	1.3	6
75	An overview of mechanisms of redox signaling. Journal of Molecular and Cellular Cardiology, 2014, 73, 2-9.	0.9	226
76	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	13.7	109
77	Antioxidants: GRABbing new headlines. Free Radical Biology and Medicine, 2014, 66, 1-2.	1.3	9
78	Antioxidants in the Intensive Care Unit. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1007-1008.	2.5	1
79	Resveratrol protects SR-B1 levels in keratinocytes exposed to cigarette smoke. Free Radical Biology and Medicine, 2014, 69, 50-57.	1.3	29
80	Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicology in Vitro, 2014, 28, 999-1005.	1.1	179
81	How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 2014, 66, 24-35.	1.3	548
82	Reactive oxygen and nitrogen species in neurodegeneration. Free Radical Biology and Medicine, 2013, 62, 1-3.	1.3	7
83	Redox regulation of microRNAs in health and disease. Free Radical Biology and Medicine, 2013, 64, 1-3.	1.3	9
84	Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biology, 2013, 1, 183-189.	3.9	31
85	Methods of lipid oxidation product identification and quantification. Free Radical Biology and Medicine, 2013, 59, 1.	1.3	2
86	The Pharmacokinetic Evaluation Of Oral Administered Carbon Monoxide Instilled In a Liquid Formulation (CO-LF) To Rats To Determine Carbon Monoxide Hemoglobin Levels With Potential Efficacy In Patients With Sickle Cell Disease (SCD). Blood, 2013, 122, 3431-3431.	0.6	0
87	Aberrant Regulation of the MRP3 Gene in Non-small Cell Lung Carcinoma. Journal of Thoracic Oncology, 2012, 7, 34-39.	0.5	13
88	Nrf2-dependent Induction of Proteasome and Pa28αβ Regulator Are Required for Adaptation to Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 10021-10031.	1.6	240
89	Glutathione synthesis and its role in redox signaling. Seminars in Cell and Developmental Biology, 2012, 23, 722-728.	2.3	166
90	Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 2012, 52, 1-6.	1.3	1,424

#	Article	IF	CITATIONS
91	Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radical Biology and Medicine, 2012, 52, 1437-1442.	1.3	61
92	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radical Biology and Medicine, 2012, 52, 2038-2046.	1.3	136
93	Cigarette Smoke Affects Keratinocytes SRB1 Expression and Localization via H2O2 Production and HNE Protein Adducts Formation. PLoS ONE, 2012, 7, e33592.	1.1	76
94	Delayed Recovery of Venous Oxygen Saturation and Lactate in SCT Subjects Following Exercise and Their Association with Red Cell Oxidative Stress. Blood, 2012, 120, 3244-3244.	0.6	0
95	Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals. Journal of Experimental Biology, 2011, 214, 1294-1299.	0.8	54
96	What is an Antioxidant: Reductant, Nucleophile, Electrophile, Scavenger or Hormetic? Searching for Consensus between Chemistry and Biology. Journal of Wine Research, 2011, 22, 139-141.	0.9	1
97	Apnea stimulates the adaptive response to oxidative stress in elephant seal pups. Journal of Experimental Biology, 2011, 214, 4193-4200.	0.8	50
98	Hexokinase from the white shrimp Litopenaeus vannamei: cDNA sequence, structural protein model and regulation via HIF-1 in response to hypoxia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 158, 242-249.	0.7	40
99	Exacerbation of tobacco smoke mediated apoptosis by resveratrol: An unexpected consequence of its antioxidant action. International Journal of Biochemistry and Cell Biology, 2011, 43, 1059-1064.	1.2	14
100	Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production. Free Radical Biology and Medicine, 2011, 51, 1184-1194.	1.3	31
101	Effect of Engineered Solid and Mesoporous Silica Particles Physical Properties on In Vitro Toxicity. Materials Research Society Symposia Proceedings, 2011, 1357, 1.	0.1	Ο
102	RasGrf1 and Aging. Aging, 2011, 3, 455-455.	1.4	2
103	Câ€Myc is a Nrf2â€interacting protein that negatively regulates phase II genes through their electrophile responsive elements. IUBMB Life, 2010, 62, 237-246.	1.5	125
104	Reactive oxygen species and α,βâ€unsaturated aldehydes as second messengers in signal transduction. Annals of the New York Academy of Sciences, 2010, 1203, 35-44.	1.8	87
105	Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups. Journal of Experimental Biology, 2010, 213, 2524-2530.	0.8	66
106	Oxidative Modification of Nuclear Mitogen-activated Protein Kinase Phosphatase 1 Is Involved in Transforming Growth Factor β1-induced Expression of Plasminogen Activator Inhibitor 1 in Fibroblasts. Journal of Biological Chemistry, 2010, 285, 16239-16247.	1.6	98
107	Signaling Functions of Reactive Oxygen Species. Biochemistry, 2010, 49, 835-842.	1.2	686
108	Reexamination of the electrophile response element sequences and context reveals a lack of consensus in gene function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 496-501.	0.9	19

#	Article	IF	CITATIONS
109	Redox Regulation of Î ³ -Glutamyl Transpeptidase. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 509-515.	1.4	140
110	Signaling pathways involved in phase II gene induction by α, β-unsaturated aldehydes. Toxicology and Industrial Health, 2009, 25, 269-278.	0.6	52
111	Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radical Biology and Medicine, 2009, 46, 1650-1657.	1.3	57
112	The role of c-Jun phosphorylation in EpRE activation of phase II genes. Free Radical Biology and Medicine, 2009, 47, 1172-1179.	1.3	41
113	Signal transduction and reactive species. Free Radical Biology and Medicine, 2009, 47, 1237-1238.	1.3	10
114	Critical Methods in Free Radical Biology & Medicine. Free Radical Biology and Medicine, 2009, 47, S207.	1.3	13
115	Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 395-405.	1.3	58
116	Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 2009, 30, 1-12.	2.7	1,647
117	Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Molecular Aspects of Medicine, 2009, 30, 86-98.	2.7	330
118	Resveratrol and 4-hydroxynonenal act in concert to increase glutamate cysteine ligase expression and glutathione in human bronchial epithelial cells. Archives of Biochemistry and Biophysics, 2009, 481, 110-115.	1.4	23
119	Thiol Chemistry in Peroxidase Catalysis and Redox Signaling. Antioxidants and Redox Signaling, 2008, 10, 1549-1564.	2.5	216
120	Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radical Biology and Medicine, 2008, 45, 1-17.	1.3	681
121	The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Archives of Biochemistry and Biophysics, 2008, 477, 183-195.	1.4	212
122	Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 151, 133-138.	0.7	33
123	Endogenous Hydrogen Peroxide Regulates Glutathione Redox via Nuclear Factor Erythroid 2-Related Factor 2 Downstream of Phosphatidylinositol 3-Kinase during Muscle Differentiation. American Journal of Pathology, 2008, 172, 1529-1541.	1.9	54
124	Novel Roles for Protein Kinase C;-dependent Signaling Pathways in Acute Hypoxic Stress-induced Autophagy. Journal of Biological Chemistry, 2008, 283, 34432-34444.	1.6	46
125	Acrolein Induces Heme Oxygenase-1 through PKC-δ and PI3K in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 483-490.	1.4	79
126	SHP-1 Inhibition by 4-Hydroxynonenal Activates Jun N-Terminal Kinase and Glutamate Cysteine Ligase. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 97-104.	1.4	26

#	Article	IF	CITATIONS
127	Hydrogen Peroxide: The Good, The Bad, and The Ugly. , 2008, , 1-17.		12
128	Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells. Redox Report, 2007, 12, 101-106.	1.4	69
129	Antioxidants in cystic fibrosisâ~†Conclusions from the CF Antioxidant Workshop, Bethesda, Maryland, November 11-12, 2003. Free Radical Biology and Medicine, 2007, 42, 15-31.	1.3	105
130	ATP Activates a Reactive Oxygen Species-dependent Oxidative Stress Response and Secretion of Proinflammatory Cytokines in Macrophages. Journal of Biological Chemistry, 2007, 282, 2871-2879.	1.6	661
131	Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radical Biology and Medicine, 2007, 42, 926-932.	1.3	159
132	Silica Induces Macrophage Cytokines through Phosphatidylcholine-Specific Phospholipase C with Hydrogen Peroxide. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 594-599.	1.4	40
133	The Adp-stimulated Nadph Oxidase Activates The Ask-1/mkk4/jnk Pathway In Alveolar Macrophages. Free Radical Research, 2006, 40, 865-874.	1.5	53
134	Introduction to serial reviews on redox regulation of phospholipases and sphingomyelinase in cell signaling. Free Radical Biology and Medicine, 2006, 40, 363.	1.3	0
135	γ-Clutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells. Free Radical Biology and Medicine, 2006, 40, 1281-1292.	1.3	53
136	Up-regulation of Î ³ -glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson's disease. Free Radical Biology and Medicine, 2006, 40, 1557-1563.	1.3	40
137	Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radical Biology and Medicine, 2006, 41, 86-91.	1.3	72
138	Redox modulation of the hepatitis C virus replication complex is calcium dependent. Free Radical Biology and Medicine, 2006, 41, 1488-1498.	1.3	29
139	4-Hydroxynonenal Induces Rat γ-Glutamyl Transpeptidase through Mitogen-Activated Protein Kinase–Mediated Electrophile Response Element/Nuclear Factor Erythroid 2–Related Factor 2 Signaling. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 174-181.	1.4	59
140	4-Hydroxynonenal increases Î ³ -glutamyl transpeptidase gene expression through mitogen-activated protein kinase pathways. Free Radical Biology and Medicine, 2005, 38, 463-471.	1.3	36
141	Nitric oxide-induced resistance to hydrogen peroxide stress is a glutamate cysteine ligase activity-dependent process. Free Radical Biology and Medicine, 2005, 38, 1361-1371.	1.3	26
142	Introduction to serial reviews on peroxiredoxinsâ~†. Free Radical Biology and Medicine, 2005, 38, 1411-1412.	1.3	1
143	HNE increases HO-1 through activation of the ERK pathway in pulmonary epithelial cells. Free Radical Biology and Medicine, 2005, 39, 355-364.	1.3	97
144	Protective effect of L-trans-pyrrolidine-2,4-dicarboxilic acid preload against cell death induced by oxygen/glucose deprivation in differentiated PC12 cells. Journal of Neuroscience Research, 2005, 82, 93-102.	1.3	5

Henry Jay Forman

#	Article	IF	CITATIONS
145	γâ€Glutamyl Transpeptidase in Glutathione Biosynthesis. Methods in Enzymology, 2005, 401, 468-483.	0.4	211
146	Glutathione, Stress Responses, and Redox Signaling in Lung Inflammation. Antioxidants and Redox Signaling, 2005, 7, 42-59.	2.5	260
147	Analysis of Transcription Factor Remodeling in Phase II Gene Expression with Curcumin. Methods in Enzymology, 2004, 378, 302-318.	0.4	13
148	Quinones and Glutathione Metabolism. Methods in Enzymology, 2004, 378, 319-340.	0.4	51
149	Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. American Journal of Physiology - Cell Physiology, 2004, 287, C246-C256.	2.1	468
150	Brain antioxidant systems in human methamphetamine users. Journal of Neurochemistry, 2004, 89, 1396-1408.	2.1	79
151	Signaling by toxicants: introduction. Free Radical Biology and Medicine, 2004, 37, 915.	1.3	Ο
152	Introduction to serial reviews on EpRE and its signaling pathway. Free Radical Biology and Medicine, 2004, 36, 1197-1198.	1.3	7
153	Introduction to serial reviews on 4-hydroxy-2-nonenal as a signaling molecule. Free Radical Biology and Medicine, 2004, 37, 594-596.	1.3	36
154	Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radical Biology and Medicine, 2004, 37, 1152-1159.	1.3	188
155	Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Archives of Biochemistry and Biophysics, 2004, 423, 116-125.	1.4	115
156	Glutathione regulates transforming growth factor-β-stimulated collagen production in fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L121-L128.	1.3	77
157	Oxidative signaling and glutathione synthesis. BioFactors, 2003, 17, 1-12.	2.6	51
158	Redox signaling and the MAP kinase pathways. BioFactors, 2003, 17, 287-296.	2.6	506
159	Novel SIN-1 reactive intermediates modulate chloride secretion across murine airway cells. Free Radical Biology and Medicine, 2003, 35, 662-675.	1.3	12
160	Curcumin alters EpRE and APâ€1 binding complexes and elevates glutamateâ€cysteine ligase gene expression. FASEB Journal, 2003, 17, 1-26.	0.2	147
161	HNE––signaling pathways leading to its elimination. Molecular Aspects of Medicine, 2003, 24, 189-194.	2.7	54
162	Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. Archives of Biochemistry and Biophysics, 2003, 411, 145-157.	1.4	89

#	Article	IF	CITATIONS
163	Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways. Biochemical and Biophysical Research Communications, 2003, 303, 287-293.	1.0	23
164	Repeated Inhalation Exposures to the Bioactivated Cytotoxicant Naphthalene (NA) Produce Airway-Specific Clara Cell Tolerance in Mice. Toxicological Sciences, 2003, 75, 161-168.	1.4	26
165	Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. Journal of Applied Physiology, 2003, 95, 2444-2452.	1.2	40
166	Cytoprotection against Oxidative Stress and the Regulation of Glutathione Synthesis. Biological Chemistry, 2003, 384, 527-37.	1.2	114
167	Priming of Alveolar Macrophage Respiratory Burst by H2O2Is Prevented by Phosphatidylcholine-Specific Phospholipase C Inhibitor Tricyclodecan-9-yl-xanthate (D609). Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 87-94.	1.3	24
168	Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochemical Journal, 2002, 362, 51.	1.7	29
169	Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochemical Journal, 2002, 362, 51-59.	1.7	62
170	Induction of Tolerance to Naphthalene in Clara Cells Is Dependent on a Stable Phenotypic Adaptation Favoring Maintenance of the Glutathione Pool. American Journal of Pathology, 2002, 160, 1115-1127.	1.9	19
171	Reactive Oxygen Species and Cell Signaling. American Journal of Respiratory and Critical Care Medicine, 2002, 166, S4-S8.	2.5	767
172	Activation of the mitochondrial caspase cascade in the absence of protein synthesis does not require c-Jun N-terminal kinase. Archives of Biochemistry and Biophysics, 2002, 405, 231-240.	1.4	26
173	A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L726-L736.	1.3	44
174	Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 2002, 64, 1019-1026.	2.0	722
175	AP-1 activation through endogenous H2O2 generation by alveolar macrophages. Free Radical Biology and Medicine, 2002, 32, 1304-1313.	1.3	56
176	4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radical Biology and Medicine, 2002, 33, 974-987.	1.3	107
177	Vanadate Inhibition of Protein Tyrosine Phosphatases Mimics Hydrogen Peroxide in the Activation of the ERK Pathway in Alveolar Macrophages. Annals of the New York Academy of Sciences, 2002, 973, 345-348.	1.8	15
178	Clutathione in Defense and Signaling. Annals of the New York Academy of Sciences, 2002, 973, 488-504.	1.8	429
179	Redox signaling. Molecular and Cellular Biochemistry, 2002, 234/235, 49-62.	1.4	182
180	Macrophage Signaling and Respiratory Burst. Immunologic Research, 2002, 26, 095-106.	1.3	239

#	Article	IF	CITATIONS
181	Redox signaling. , 2002, , 49-62.		5
182	Redox signaling. Molecular and Cellular Biochemistry, 2002, 234-235, 49-62.	1.4	57
183	Redox signaling in macrophages. Molecular Aspects of Medicine, 2001, 22, 189-216.	2.7	474
184	Oxidantâ€induced Regulation of Glutathione Synthesis. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2001, 8, Unit 6.7.	1.1	1
185	Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L24-L30.	1.3	47
186	Signaling by the Respiratory Burst in Macrophages. IUBMB Life, 2001, 51, 365-371.	1.5	91
187	ADP stimulates the respiratory burst without activation of ERK and AKT in rat alveolar macrophages. Free Radical Biology and Medicine, 2001, 31, 679-687.	1.3	15
188	Biphasic Effects of 15-Deoxy-Δ 12,14 -Prostaglandin J 2 on Glutathione Induction and Apoptosis in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1846-1851.	1.1	144
189	4-Hydroxy-2-nonenal Increases γ -Glutamylcysteine Synthetase Gene Expression in Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 499-505.	1.4	50
190	Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in a human breast carcinoma cell line. Free Radical Biology and Medicine, 2000, 28, 575-584.	1.3	27
191	Cell Ca2+ in Signal Transduction: Modulation in Oxidative Stress. , 2000, , 105-127.		1
192	Phospholipase D and Priming of the Respiratory Burst by H2O2in NR8383 Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 748-754.	1.4	18
193	Glutathione Depletion in PC12 Results in Selective Inhibition of Mitochondrial Complex I Activity. Journal of Biological Chemistry, 2000, 275, 26096-26101.	1.6	228
194	Molecular Mechanism of Decreased Glutathione Content in Human Immunodeficiency Virus Type 1 Tat-transgenic Mice. Journal of Biological Chemistry, 2000, 275, 3693-3698.	1.6	147
195	Modulation of Glutathione Synthetic Enzymes by Acidic Fibroblast Growth Factor. Archives of Biochemistry and Biophysics, 2000, 375, 201-209.	1.4	12
196	Nitric Oxide, Oxidative Stress, and Signal Transduction. , 2000, , 329-342.		4
197	Abnormal glutathione transport in cystic fibrosis airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L113-L118.	1.3	124
198	The induction of GSH synthesis by nanomolar concentrations of NO in endothelial cells: a role for γ-glutamylcysteine synthetase and γ-glutamyl transpeptidase. FEBS Letters, 1999, 448, 292-296.	1.3	115

#	Article	IF	CITATIONS
199	Depletion of Glutathione by Buthionine Sulfoximine Is Cytotoxic for Human Neuroblastoma Cell Lines via Apoptosis. Experimental Cell Research, 1999, 246, 183-192.	1.2	97
200	Activation of Several MAP Kinases upon Stimulation of Rat Alveolar Macrophages: Role of the NADPH Oxidase. Archives of Biochemistry and Biophysics, 1999, 366, 231-239.	1.4	68
201	Free Radical and Antioxidant Protocols. Donald Armstrong. Quarterly Review of Biology, 1999, 74, 341-342.	0.0	Ο
202	Transmembrane Redox Signaling Activates NF-κB in Macrophages. Free Radical Biology and Medicine, 1998, 24, 202-207.	1.3	48
203	The alveolar macrophage as a model of calcium signaling in oxidative stress. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 1998, 1, 117-134.	2.9	41
204	Role of Protein Kinase C in Basal and Hydrogen Peroxide-Stimulated NF-κB Activation in the Murine Macrophage J774A.1 Cell Line. Archives of Biochemistry and Biophysics, 1998, 350, 79-86.	1.4	51
205	Nitric Oxide-Dependent Induction of Glutathione Synthesis through Increased Expression of Î ³ -Clutamylcysteine Synthetase. Archives of Biochemistry and Biophysics, 1998, 358, 74-82.	1.4	118
206	Quinones increase Î ³ -glutamyl transpeptidase expression by multiple mechanisms in rat lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L330-L336.	1.3	37
207	Î ³ -Clutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L861-L869.	1.3	53
208	Adaptation to oxidative stress: Quinone-mediated protection of signaling in rat lung epithelial L2 cells. Biochemical Pharmacology, 1997, 53, 987-993.	2.0	50
209	Increased Transcription of the Regulatory Subunit of Î ³ -Clutamylcysteine Synthetase in Rat Lung Epithelial L2 Cells Exposed to Oxidative Stress or Glutathione Depletion. Archives of Biochemistry and Biophysics, 1997, 342, 126-133.	1.4	133
210	Ca ²⁺ -dependent p47 ^{phox} translocation in hydroperoxide modulation of the alveolar macrophage respiratory burst. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1042-L1047.	1.3	11
211	On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB Journal, 1997, 11, 374-375.	0.2	124
212	Oxidants as Stimulators of Signal Transduction. Free Radical Biology and Medicine, 1997, 22, 269-285.	1.3	1,252
213	Modulation of the Rat Alveolar Macrophage Respiratory Burst by Hydroperoxides Is Calcium Dependent. Archives of Biochemistry and Biophysics, 1996, 326, 166-171.	1.4	40
214	Activation of NFκB by the respiratory burst of macrophages. Free Radical Biology and Medicine, 1996, 21, 401-405.	1.3	119
215	Induction of p21 Mediated by Reactive Oxygen Species Formed during the Metabolism of Aziridinylbenzoquinones by HCT116 Cells. Journal of Biological Chemistry, 1996, 271, 31915-31921.	1.6	63
216	Hydroperoxide-induced Increases in Intracellular Calcium Due to Annexin VI Translocation and Inactivation of Plasma Membrane Ca2+-ATPase. Journal of Biological Chemistry, 1996, 271, 29205-29210.	1.6	70

#	Article	IF	CITATIONS
217	[7] Measurement of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase activities in cells. Methods in Enzymology, 1995, 252, 66-71.	0.4	25
218	Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radical Biology and Medicine, 1995, 18, 37-45.	1.3	29
219	Detecting and identifying volatile aldehydes as dinitrophenylhydrazones using gas chromatography mass spectrometry. Free Radical Biology and Medicine, 1995, 18, 553-557.	1.3	25
220	Modulation of ADP-Stimulated Inositol Phosphate Metabolism in Rat Alveolar Macrophages by Oxidative Stress. Archives of Biochemistry and Biophysics, 1995, 318, 215-220.	1.4	20
221	Release of aldehydes from rat alveolar macrophages exposed in vitro to low concentrations of nitrogen dioxide. Lipids and Lipid Metabolism, 1995, 1256, 334-340.	2.6	20
222	Extracellular glutathione and Î ³ -glutamyl transpeptidase prevent H2O2-induced injury by 2,3-dimethoxy-1,4-naphthoquinone. Free Radical Biology and Medicine, 1993, 15, 57-67.	1.3	92
223	Dual Effect of Nitrogen Dioxide on Rat Alveolar Macrophage Arachidonate Metabolism. Experimental Lung Research, 1993, 19, 21-36.	0.5	13
224	Stimulation of the Rat Alveolar Macrophage Respiratory Burst by Extracellular Adenine Nucleotides. American Journal of Respiratory Cell and Molecular Biology, 1993, 9, 505-510.	1.4	38
225	Depression of stimulated arachidonate metabolism and superoxide production in rat alveolar macrophages following in vivo exposure to 0.5 PPM NO ₂ . Journal of Toxicology and Environmental Health - Part A: Current Issues, 1993, 38, 273-292.	1.1	16
226	Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages. Archives of Biochemistry and Biophysics, 1992, 299, 83-91.	1.4	37
227	Transfection with γ-glutamyl transpeptidase enhances recovery from glutathione depletion using extracellular glutathione. Toxicology and Applied Pharmacology, 1992, 114, 56-62.	1.3	57
228	Ontogeny of Antioxidant Enzymes in the Fetal Lamb Lung. Experimental Lung Research, 1991, 17, 39-45.	0.5	48
229	Augmentation of Superoxide Dismutase and Catalase Activity in Alveolar Type II Cells. American Journal of Respiratory Cell and Molecular Biology, 1991, 4, 364-368.	1.4	20
230	INFLAMMATION: AN OVERVIEW. , 1991, , 636-641.		1
231	Chemoattractant and Leukotriene B4Production from Rat Alveolar Macrophages Exposed to Nitrogen Dioxide. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 21-26.	1.4	16
232	Generation of aldehydes from rat alveolar macrophages exposed to nitrogen dioxide. Free Radical Biology and Medicine, 1990, 9, 115.	1.3	1
233	Relationship of depolarization to inhibition of the alveolar macrophage respiratory burst by H2O2. Free Radical Biology and Medicine, 1990, 9, 141.	1.3	1
234	Inhibition of arachidonic acid release by nordihydroguaiaretic acid and its antioxidant action in rat alveolar macrophages and chinese hamster lung fibroblasts. Toxicology and Applied Pharmacology, 1990, 105, 113-122.	1.3	38

#	Article	IF	CITATIONS
235	3 Oxidant Radical Production and Lung Injury. , 1990, , 71-96.		3
236	t-Butyl hydroperoxide stimulates alveolar macrophage biosynthesis of cyclooxygenase products. Prostaglandins, 1990, 40, 13-28.	1.2	9
237	Inhibition of production of LTB4 and chemotactic agent from rat alveolar macrophages treated with t-butyl hydroperoxide is independent of ATP depletion. Lipids and Lipid Metabolism, 1990, 1045, 9-16.	2.6	7
238	Adhering lung macrophages produce superoxide demonstrated with desferal-Mn(IV). Free Radical Biology and Medicine, 1989, 6, 513-518.	1.3	13
239	Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: Effects upon mitochondrial and plasma membrane potentials. Archives of Biochemistry and Biophysics, 1989, 274, 443-452.	1.4	35
240	Dependence of mixed disulfide formation in alveolar macrophages upon production of oxidized glutathione: effect of selenium depletion. Biochemical Pharmacology, 1989, 38, 3119-3121.	2.0	14
241	Ethanol modulation of rat alveolar macrophage superoxide production. Biochemical Pharmacology, 1988, 37, 3528-3531.	2.0	33
242	Kinetics of uptake and distribution of arachidonic acid by rat alveolar macrophages. Prostaglandins, 1988, 36, 443-461.	1.2	9
243	Role of Selenium-Dependent Glutathione Peroxidase in Antioxidant Defenses in Rat Alveolar Macrophages. Experimental Lung Research, 1988, 14, 921-936.	0.5	23
244	Membrane Permeability and Oxidant Induced Injury. , 1988, 49, 523-530.		4
245	A dual role for calcium in regulation of superoxide generation by stimulated rat alveolar macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 928, 137-143.	1.9	20
246	The Effect of Ethanol on Superoxide Production in Alveolar Macrophages. Annals of the New York Academy of Sciences, 1987, 492, 324-326.	1.8	4
247	Hydroperoxide-induced damage to alveolar macrophage function and membrane integrity: Alterations in intracellular-free Ca2+ and membrane potential. Archives of Biochemistry and Biophysics, 1987, 259, 457-465.	1.4	38
248	Progressive loss of the macrophage respiratory burst in oxygen toxicity. Journal of Free Radicals in Biology & Medicine, 1986, 2, 129-134.	2.1	0
249	Thioredoxin and glutaredoxin systems: Structure and function. Journal of Free Radicals in Biology & Medicine, 1986, 2, 83.	2.1	0
250	Oxygen toxicity: Loss of lung macrophage function without metabolite depletion. Journal of Free Radicals in Biology & Medicine, 1985, 1, 209-214.	2.1	22
251	Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages. Archives of Biochemistry and Biophysics, 1985, 243, 325-331.	1.4	35
252	Mechanisms of pulmonary oxygen toxicity. Lung, 1984, 162, 255-259.	1.4	65

#	Article	IF	CITATIONS
253	Superoxide toxicity. Trends in Biochemical Sciences, 1982, 7, 279.	3.7	3
254	Superoxide Radical and Hydrogen Peroxide in Mitochondria. , 1982, , 65-90.		145
255	Antioxidant Defenses. Topics in Environmental Physiology and Medicine, 1981, , 235-249.	0.2	40
256	Mammalian dihydroorotate dehydrogenase: Physical and catalytic properties of the primary enzyme. Archives of Biochemistry and Biophysics, 1978, 191, 23-31.	1.4	25
257	Purification of the Primary Dihydroorotate Dehydrogenase (Oxidase) from Rat Liver Mitochondria. Preparative Biochemistry and Biotechnology, 1977, 7, 345-355.	0.4	15
258	Dihydroorotate-dependent superoxide producton in rat brain and liver. Archives of Biochemistry and Biophysics, 1976, 173, 219-224.	1.4	93
259	Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochemical and Biophysical Research Communications, 1974, 60, 1044-1050.	1.0	107
260	Superoxide dismutase: A comparison of rate constants. Archives of Biochemistry and Biophysics, 1973, 158, 396-400.	1.4	227