
Chih-Hung Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011651/publications.pdf Version: 2024-02-01

Снин-Нимс Тели

#	Article	IF	CITATIONS
1	Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2010, 75, 4778-4785.	1.7	198
2	Efficient Green Coumarin Dopants for Organic Light-Emitting Devices. Organic Letters, 2004, 6, 1241-1244.	2.4	146
3	Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer. Journal of Materials Chemistry, 2011, 21, 5950.	6.7	105
4	Organic Dyes Containing a Coplanar Indacenodithiophene Bridge for High-Performance Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2011, 76, 8977-8985.	1.7	80
5	Porphyrins for efficient dye-sensitized solar cells covering the near-IR region. Journal of Materials Chemistry A, 2014, 2, 991-999.	5.2	72
6	A Novel Amine-Free Dianchoring Organic Dye for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 6338-6341.	2.4	58
7	Indolo[2,3- <i>b</i>]carbazole Synthesized from a Double-Intramolecular Buchwald–Hartwig Reaction: Its Application for a Dianchor DSSC Organic Dye. Organic Letters, 2014, 16, 3176-3179.	2.4	51
8	High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets. Organic Electronics, 2011, 12, 1777-1782.	1.4	47
9	Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems. Organic Electronics, 2011, 12, 15-21.	1.4	46
10	Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11382-11390.	5.2	45
11	2,1,3-Benzothiadiazole-containing donor–acceptor–acceptor dyes for dye-sensitized solar cells. Tetrahedron, 2012, 68, 7509-7516.	1.0	44
12	CuO and CuO/Graphene Nanostructured Thin Films as Counter Electrodes for Pt-Free Dye-Sensitized Solar Cells. Coatings, 2018, 8, 21.	1.2	34
13	Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode. Solar Energy Materials and Solar Cells, 2021, 231, 111306.	3.0	34
14	Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA. Organic Electronics, 2012, 13, 2333-2341.	1.4	33
15	Efficient gel-state dye-sensitized solar cells adopting polymer gel electrolyte based on poly(methyl) Tj ETQq1 1	0.784314 1.4	rgBT /Overlo
16	Organic lightâ€emitting devices integrated with internal scattering layers for enhancing optical outâ€coupling. Journal of the Society for Information Display, 2011, 19, 196-204.	0.8	32
17	Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells. Applied Surface Science, 2018, 434, 412-422.	3.1	32
18	Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Organic Electronics, 2011, 12, 2003-2011.	1.4	31

Chih-Hung Tsai

#	Article	IF	CITATIONS
19	Reduced graphene oxide/macrocyclic iron complex hybrid materials as counter electrodes for dye-sensitized solar cells. Journal of Colloid and Interface Science, 2017, 495, 111-121.	5.0	31
20	Utilizing surface plasmon polariton mediated energy transfer for tunable double-emitting organic light-emitting devices. Organic Electronics, 2010, 11, 397-406.	1.4	29
21	Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells. Organic Electronics, 2012, 13, 199-205.	1.4	29
22	Highly Twisted Dianchoring Dâ~ï€â€"A Sensitizers for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27832-27842.	4.0	29
23	Investigation of graphene nanosheets as counter electrodes for efficient dye-sensitized solar cells. Organic Electronics, 2015, 17, 57-65.	1.4	26
24	High-efficiency counter electrodes using graphene hybrid with a macrocyclic nickel complex for dye-sensitized solar cells. Organic Electronics, 2016, 31, 207-216.	1.4	26
25	Preparation of reduced graphene oxide/macrocyclic manganese complex composite materials as counter electrodes in dye-sensitized solar cells. Organic Electronics, 2018, 52, 51-60.	1.4	25
26	Poly(o-methoxyaniline) doped with an organic acid as cost-efficient counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2016, 213, 791-801.	2.6	24
27	Investigation of Coral-Like Cu2O Nano/Microstructures as Counter Electrodes for Dye-Sensitized Solar Cells. Materials, 2015, 8, 5715-5729.	1.3	22
28	Photoinduced charge separation in donor–acceptor spiro compounds at metal and metal oxide surfaces: application in dye-sensitized solar cell. RSC Advances, 2012, 2, 4869.	1.7	21
29	Regioisomeric Effects on the Electronic Features of Indenothiopheneâ€Bridged D–πâ€A′–A DSSC Sensitizers. Chemistry - A European Journal, 2014, 20, 16574-16582.	1.7	21
30	Novel organic dyes containing N-bridged oligothiophene coplanar cores for dye-sensitized solar cells. Organic Electronics, 2015, 18, 8-16.	1.4	20
31	Covalent bond–grafted soluble poly(o-methoxyaniline)-graphene oxide composite materials fabricated as counter electrodes of dye-sensitised solar cells. Organic Electronics, 2017, 42, 209-220.	1.4	20
32	Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14, 2866-2874.	1.4	19
33	O ₂ /HMDSO-Plasma-Deposited Organic-Inorganic Hybrid Film for Gate Dielectric of MgZnO Thin-Film Transistor. Plasma Processes and Polymers, 2014, 11, 89-95.	1.6	19
34	Improving the performance of perovskite solar cells by adding 1,8-diiodooctane in the CH3NH3PbI3 perovskite layer. Solar Energy, 2018, 176, 178-185.	2.9	19
35	Nanoporous platinum counter electrodes by glancing angle deposition for dye-sensitized solar cells. Organic Electronics, 2012, 13, 856-863.	1.4	18
36	Spontaneous Formation of Nanofibrillar and Nanoporous Structures in High onductivity Conducting Polymers and Applications for Dye‧ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401738.	10.2	17

Chih-Hung Tsai

#	Article	IF	CITATIONS
37	High-Power Angled Broad-Area 1.3- <tex>\$muhboxm\$</tex> Laser Diodes With Good Beam Quality. IEEE Photonics Technology Letters, 2004, 16, 2412-2414.	1.3	16
38	Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO2 working electrodes. Applied Surface Science, 2015, 347, 64-72.	3.1	16
39	A multifunctional Ni-doped iron pyrite/reduced graphene oxide composite as an efficient counter electrode for DSSCs and as a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Transactions, 2020, 49, 8516-8527.	1.6	16
40	Characterizing coherence lengths of organic light-emitting devices using Newton's rings apparatus. Organic Electronics, 2010, 11, 439-444.	1.4	15
41	Enhancing the Efficiency and Charge Transport Characteristics of Dye-Sensitized Solar Cells by Adding Graphene Nanosheets to TiO2 Working Electrodes. Electrochimica Acta, 2015, 165, 356-364.	2.6	15
42	Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells. Organic Electronics, 2012, 13, 1865-1872.	1.4	14
43	Synthesis of reduced graphene oxide/macrocyclic ytterbium complex nanocomposites and their application in the counter electrodes of dye-sensitized solar cells. Organic Electronics, 2019, 64, 166-175.	1.4	14
44	Intriguing field-effect-transistor performance of two-dimensional layered and crystalline CrI3. Materials Today Physics, 2020, 12, 100174.	2.9	13
45	Increasing the Efficiency of Dye-Sensitized Solar Cells by Adding Nickel Oxide Nanoparticles to Titanium Dioxide Working Electrodes. Coatings, 2020, 10, 195.	1.2	12
46	Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. FlatChem, 2021, 28, 100254.	2.8	12
47	Adding graphene nanosheets in liquid electrolytes to improve the efficiency of dye-sensitized solar cells. Materials Chemistry and Physics, 2018, 207, 154-160.	2.0	11
48	Investigation of the Effects of Various Organic Solvents on the PCBM Electron Transport Layer of Perovskite Solar Cells. Coatings, 2020, 10, 237.	1.2	11
49	Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells. Coatings, 2021, 11, 627.	1.2	10
50	Functionalizing organic dye with cross-linked electrolyte-blocking shell as a new strategy for improving DSSC efficiency. RSC Advances, 2012, 2, 3722.	1.7	9
51	A study of novel macrocyclic copper complex/grapheneâ€based composite materials for counter electrodes of dyeâ€sensitized solar cells. Journal of the Chinese Chemical Society, 2019, 66, 996-1007.	0.8	5
52	Comparative study on the effect of annealing temperature on sol–gel-derived nickel oxide thin film as hole transport layers for inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 8157-8166.	1.1	5
53	Novel Semiconductor-Liquid Heterojunction Solar Cells Based on Cuprous Oxide and lodine Electrolyte. Electrochimica Acta, 2015, 167, 112-118.	2.6	4
54	A frontier Zn- and N-rich complex grafted onto reduced graphene oxide for the electrocatalysis of dye-sensitized solar cells. Dalton Transactions, 2020, 49, 9035-9047.	1.6	4

CHIH-HUNG TSAI

#	Article	IF	CITATIONS
55	Influences of Stacking Architectures of TiO2Nanoparticle Layers on Characteristics of Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	3
56	Investigation of Electrochemically Deposited and Chemically Reduced Platinum Nanostructured Thin Films as Counter Electrodes in Dye-Sensitized Solar Cells. Coatings, 2018, 8, 56.	1.2	3
57	Enhancing the efficiency of quasi-solid-state dye-sensitized solar cells by adding bis(trifluoromethane)sulfonimide lithium salt and camphorsulfonic acid to gel-based electrolytes. Materials Research Bulletin, 2018, 107, 87-93.	2.7	3
58	Charge Separation in Donor–Acceptor Spiro Compounds at Metal and Metal Oxide Surfaces Investigated by Surface Photovoltage. Journal of Nanoscience and Nanotechnology, 2013, 13, 5158-5163.	0.9	2
59	Efficiency evaluation of a hybrid miniaturized concentrated photovoltaic for harvesting direct/diffused solar light. Journal of Optics (United Kingdom), 2019, 21, 035901.	1.0	2
60	Dihydrophenazineâ€based doubleâ€anchoring dye for dyeâ€sensitized solar cells. Journal of the Chinese Chemical Society, 2020, 67, 361-369.	0.8	2
61	Optical properties of dyes affected by accelerating UV light exposure. Japanese Journal of Applied Physics, 2015, 54, 09MF03.	0.8	1
62	Superluminescent diodes with output power over 1 W and with diffraction-limited beam quality. , 0, , .		0
63	Back Cover: Plasma Process. Polym. 1â^•2014. Plasma Processes and Polymers, 2014, 11, 100-100.	1.6	0
64	The realization of nipip HIT photodetectors with an optimized thickness of intrinsic a-Si:H. Materials Science in Semiconductor Processing, 2022, 144, 106590.	1.9	0