
Zheng-Rong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the <i>5-enolpyruvylshikimate-3-phosphate Synthase</i> Gene from Walnut (<i>Juglans regia</i> L.). Horticulture Journal, 2022, 91, 176-185.	0.3	2
2	Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). Horticulturae, 2022, 8, 136.	1.2	4
3	DkmiR397 Regulates Proanthocyanidin Biosynthesis via Negative Modulating DkLAC2 in Chinese PCNA Persimmon. International Journal of Molecular Sciences, 2022, 23, 3200.	1.8	10
4	An Efficient Agrobacterium-Mediated Genetic Transformation System for Persimmon (Diospyros kaki) Tj ETQq0 0	0 rgBT /O [.] 1.2	verlock 10 Tf 2
5	Development of Agrobacterium-mediated transient transformation for fruit discs in persimmon (Diospyros kaki Thunb.). European Journal of Horticultural Science, 2022, 87, .	0.3	2
6	The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules, 2021, 26, 3013.	1.7	29
7	DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. Plant Journal, 2021, 106, 1708-1727.	2.8	21
8	Comparative transcriptome analysis reveals regulatory network and regulators associated with proanthocyanidin accumulation in persimmon. BMC Plant Biology, 2021, 21, 356.	1.6	13
9	Genome-Wide Identification of the 1-Aminocyclopropane-1-carboxylic Acid Synthase (ACS) Genes and Their Possible Role in Sand Pear (Pyrus pyrifolia) Fruit Ripening. Horticulturae, 2021, 7, 401.	1.2	2
10	DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon. Plant Science, 2020, 290, 110285.	1.7	11
11	MiR858b Inhibits Proanthocyanidin Accumulation by the Repression of DkMYB19 and DkMYB20 in Persimmon. Frontiers in Plant Science, 2020, 11, 576378.	1.7	17
			_

12	Germplasm conservation, molecular identity and morphological characterization of persimmon (Diospyros kaki Thunb.) in the NFGP of China. Scientia Horticulturae, 2020, 272, 109490.	1.7	16
13	The assessment of epigenetic diversity, differentiation, and structure in the â€~Fuji' mutation line implicates roles of epigenetic modification in the occurrence of different mutant groups as well as spontaneous mutants. PLoS ONE, 2020, 15, e0235073.	1.1	9
14	Plant tannin immobilized Fe3O4@SiO2 microspheres: A novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium. Journal of Hazardous Materials, 2019, 364, 780-790.	6.5	105
15	Vacuum infiltration enhances the Agrobacterium-mediated transient transformation for gene functional analysis in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 2019, 251, 174-180.	1.7	15
16	Number of Species and Geographical Distribution of Diospyros L. (Ebenaceae) in China. Horticultural Plant Journal, 2019, 5, 59-69.	2.3	10
17	Hypoxiaâ€responsive <i><scp>ERF</scp>s</i> involved in postdeastringency softening of persimmon fruit. Plant Biotechnology Journal, 2017, 15, 1409-1419.	4.1	40
18	An integrated analysis based on transcriptome and proteome reveals deastringency-related genes in CPCNA persimmon. Scientific Reports, 2017, 7, 44671.	1.6	25

2

ZHENG-RONG LUO

#	Article	IF	CITATIONS
19	ALDH2 genes are negatively correlated with natural deastringency in Chinese PCNA persimmon (Diospyros kaki Thunb.). Tree Genetics and Genomes, 2017, 13, 1.	0.6	5
20	DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression. Frontiers in Plant Science, 2017, 08, 149.	1.7	19
21	Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon. Frontiers in Plant Science, 2016, 7, 156.	1.7	16
22	Enhanced adsorption and recovery of Pb(II) from aqueous solution by alkaliâ€ŧreated persimmon fallen leaves. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
23	Androecious Genotype â€~Male 8' Carries the CPCNA Gene Locus Controlling Natural Deastringency of Chinese PCNA Persimmons. Horticultural Plant Journal, 2016, 2, 309-314.	2.3	9
24	Selective Recovery of Au(III) and Pd(II) from Waste PCBs Using Ethylenediamine Modified Persimmon Tannin Adsorbent. Procedia Environmental Sciences, 2016, 31, 185-194.	1.3	40
25	NaOH Modification of Persimmon Powder-formaldehyde Resin to Enhance Cu2+ and Pb2+ Removal from Aqueous Solution. Procedia Environmental Sciences, 2016, 31, 817-826.	1.3	8
26	Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit. Plant Physiology and Biochemistry, 2016, 108, 241-250.	2.8	19
27	Validation of a maleâ€linked gene locus (<i><scp>OGI</scp></i>) for sex identification in persimmon (<i>Diospyros kaki</i> Thunb.) and its application in F ₁ progeny. Plant Breeding, 2016, 135, 721-727.	1.0	21
28	Adsorption recovery of Pd(II) from aqueous solutions by persimmon residual based bio-sorbent. Hydrometallurgy, 2016, 165, 323-328.	1.8	29
29	Recovery of Palladium(II) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 299-305.	2.7	31
30	ADH and PDC genes involved in tannins coagulation leading to natural de-astringency in Chinese pollination constant and non-astringency persimmon (Diospyros kaki Thunb.). Tree Genetics and Genomes, 2016, 12, 1.	0.6	21
31	DKRE1—The first full-length Ty1-copia-like retrotransposon in persimmon: Isolation, characteristic and potential involvement in occurrence of bud mutations. Scientia Horticulturae, 2015, 184, 149-159.	1.7	5
32	SSAP analysis reveals candidate genes associated with deastringency in persimmon (Diospyros kaki) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 14
33	Development of Agrobacterium-mediated transient transformation in persimmon (Diospyros kaki) Tj ETQq1 1 0.	784314 rg 1.7	gBT ₃₂ Overloc
34	Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biology, 2015, 15, 11.	1.6	52
35	Two Novel Anoxia-Induced Ethylene Response Factors That Interact with Promoters of Deastringency-Related Genes from Persimmon. PLoS ONE, 2014, 9, e97043.	1.1	50
36	Discriminant analysis of "Jinzaoshi―from persimmon (Diospyros kaki Thunb.; Ebenaceae): A comparative study conducted based on morphological as well as ITS and matK sequence analyses. Scientia Horticulturae, 2014, 168, 168-174.	1.7	16

ZHENG-RONG LUO

#	Article	IF	CITATIONS
37	Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. BMC Genomics, 2014, 15, 112.	1.2	38
38	Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes. Bioresource Technology, 2014, 163, 167-171.	4.8	77
39	Isolation and characterisation of a Myb transcription factor DkPA1 related to proanthocyanidin biosynthesis in C-PCNA and non-PCNA persimmon (Diospyros kaki Thunb.) fruit. Acta Physiologiae Plantarum, 2014, 36, 1831-1839.	1.0	5
40	Isolation and characterization of a Laccase gene potentially involved in proanthocyanidin polymerization in oriental persimmon (Diospyros kaki Thunb.) fruit. Molecular Biology Reports, 2013, 40, 2809-2820.	1.0	24
41	Effectiveness of the RO2 marker for the identification of non-astringency trait in Chinese PCNA persimmon and its possible segregation ratio in hybrid F1 population. Scientia Horticulturae, 2013, 150, 227-231.	1.7	14
42	Selective adsorption of Au ³⁺ from aqueous solutions using persimmon powderâ€formaldehyde resin. Journal of Applied Polymer Science, 2013, 130, 3937-3946.	1.3	19
43	Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency. Journal of Experimental Botany, 2012, 63, 6393-6405.	2.4	110
44	Isolation and characterization of a basic Helix–Loop–Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 2012, 136, 115-121.	1.7	28
45	Genetic differences among â€`Luotian-tianshi' (Diospyros kaki Thunb.) genotypes native to China revealed by ISSR and IRAP markers. Scientia Horticulturae, 2012, 137, 75-80.	1.7	12
46	NEW CANDIDATE FOR THE ANCESTOR OF JAPANESE PERSIMMON (DIOSPYROS KAKI THUNB.) FOUND IN YUNNAN PROVINCE OF CHINA. Acta Horticulturae, 2012, , 121-128.	0.1	6
47	Expression of ethylene response genes during persimmon fruit astringency removal. Planta, 2012, 235, 895-906.	1.6	66
48	Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb.: view at the transcriptome at different developmental stages. 3 Biotech, 2011, 1, 35-45.	1.1	8
49	Comparison of four molecular markers for genetic analysis in Diospyros L. (Ebenaceae). Plant Systematics and Evolution, 2009, 281, 171-181.	0.3	32
50	Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genetics and Genomes, 2009, 5, 235-245.	0.6	37
51	Identification of Self-Incompatibility Genotypes in Some Sand Pears (Pyrus pyrifolia Nakai) by PCR-RFLP Analysis. Agricultural Sciences in China, 2009, 8, 154-160.	0.6	6
52	Microsatellite Isolation and Characterization in Japanese Persimmon (Diospyros kaki). Biochemical Genetics, 2008, 46, 323-328.	0.8	13
53	Phylogenetic analysis in some Diospyros spp. (Ebenaceae) and Japanese persimmon using chloroplast DNA PCR-RFLP markers. Scientia Horticulturae, 2008, 117, 32-38.	1.7	19
54	Occurrence and cytological mechanism of 2n pollen formation in Chinese <i>Diospyros</i> spp. (Ebenaceae) staminate germplasm. Journal of Horticultural Science and Biotechnology, 2008, 83, 668-672.	0.9	16

ZHENG-RONG LUO

#	Article	IF	CITATIONS
55	Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp Scientia Horticulturae, 2006, 109, 275-281.	1.7	17
56	Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Science, 2006, 170, 528-533.	1.7	48
57	Genetic Relationships of some PCNA Persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution, 2006, 53, 1597-1603.	0.8	67
58	Evaluation of RAPD Analysis for Cultivar Identification of Persimmons Journal of the Japanese Society for Horticultural Science, 1995, 64, 535-541.	0.4	25