Rui-di Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011555/publications.pdf

Version: 2024-02-01

		136740	102304
134	5,190	32	66
papers	citations	h-index	g-index
135	135	135	3406
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Balling behavior of stainless steel and nickel powder during selective laser melting process. International Journal of Advanced Manufacturing Technology, 2012, 59, 1025-1035.	1.5	507
2	Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. Journal of Alloys and Compounds, 2018, 746, 125-134.	2.8	378
3	Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science, 2010, 256, 4350-4356.	3.1	372
4	Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Materialia, 2020, 193, 83-98.	3.8	321
5	Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 344-351.	2.6	265
6	Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties. Powder Technology, 2017, 319, 117-128.	2.1	203
7	316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance, 2010, 19, 666-671.	1.2	177
8	Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors. Materials Science & Densification (Materials: Properties), Microstructure and Processing, 2017, 707, 443-451.	2.6	95
9	Enhanced atomic diffusion of Fe–Al diffusion couple during spark plasma sintering. Scripta Materialia, 2016, 110, 105-108.	2.6	92
10	Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting. Materials and Design, 2019, 168, 107668.	3.3	86
11	Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scripta Materialia, 2018, 143, 25-29.	2.6	83
12	Microstructures and tensile properties of a selective laser melted Al–Zn–Mg–Cu (Al7075) alloy by Si and Zr microalloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139492.	2.6	81
13	Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting. Journal of Alloys and Compounds, 2018, 762, 289-300.	2.8	75
14	Spark plasma sintering of pure tungsten powder: Densification kinetics and grain growth. Powder Technology, 2017, 310, 264-271.	2.1	73
15	Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting – A comparison between nearly β titanium, α titanium and α + β titanium. Optics and Laser Technology, 2019, 119, 105625.	2.2	73
16	Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 275-285.	2.6	68
17	Development and characterization of laser surface cladding (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper. Optics and Laser Technology, 2012, 44, 1351-1358.	2.2	59
18	Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting. Optics and Laser Technology, 2020, 127, 106147.	2.2	59

#	Article	IF	CITATIONS
19	Effects of processing parameters on the temperature field of selective laser melting metal powder. Powder Metallurgy and Metal Ceramics, 2009, 48, 186-195.	0.4	56
20	Selective laser melting W–10Âwt.% Cu composite powders. International Journal of Advanced Manufacturing Technology, 2010, 48, 597-605.	1.5	55
21	Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics, 2020, 120, 106746.	1.8	54
22	Selective laser melted AlSi10Mg alloy under melting mode transition: Microstructure evolution, nanomechanical behaviors and tensile properties. Journal of Alloys and Compounds, 2021, 873, 159823.	2.8	54
23	Microstructure, metallurgical defects and hardness of Al–Cu–Mg–Li–Zr alloy additively manufactured by selective laser melting. Journal of Alloys and Compounds, 2020, 835, 155372.	2.8	50
24	Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 329-340.	2.6	48
25	Spark plasma sintering of pure TiCN: Densification mechanism, grain growth and mechanical properties. International Journal of Refractory Metals and Hard Materials, 2017, 66, 68-75.	1.7	47
26	Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation. International Journal of Refractory Metals and Hard Materials, 2018, 70, 9-18.	1.7	47
27	Hall-Petch relationship in selective laser melting additively manufactured metals: using grain or cell size?. Journal of Central South University, 2021, 28, 1043-1057.	1.2	47
28	Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings. Materials Characterization, 2016, 120, 82-89.	1.9	45
29	Laser cladding Ni-based alloy/nano-Ni encapsulated h-BN self-lubricating composite coatings. Surface and Coatings Technology, 2017, 332, 422-427.	2.2	44
30	Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology, 2019, 342, 11-23.	2.1	39
31	Effect of laser parameters on microstructure, metallurgical defects and property of AlSi10Mg printed by selective laser melting. Journal of Micromechanics and Molecular Physics, 2017, 02, 1750017.	0.7	38
32	Densification mechanisms and microstructural evolution during spark plasma sintering of boron carbide powders. Ceramics International, 2018, 44, 3571-3579.	2.3	37
33	Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 753-766.	1.1	34
34	Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure. Optics and Laser Technology, 2018, 99, 374-381.	2.2	33
35	Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films. Ceramics International, 2017, 43, 8866-8872.	2.3	32
36	Microstructures and mechanical properties of Si and Zr modified Al–Zn–Mg–Cu alloy-A comparison between selective laser melting and spark plasma sintering. Journal of Alloys and Compounds, 2020, 821, 153520.	2.8	32

#	Article	IF	Citations
37	Research on Process and Microstructure Formation of W-Ni-Fe Alloy Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance, 2011, 20, 1049-1054.	1.2	31
38	Microstructures and mechanical property of AlMgScZrMn - A comparison between selective laser melting, spark plasma sintering and cast. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 354-364.	2.6	31
39	Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: Microstructure evolution, mechanical properties and deformation mechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141264.	2.6	31
40	Electrocatalytic properties of Ni-S-Co coating electrode for hydrogen evolution in alkaline medium. Transactions of Nonferrous Metals Society of China, 2007, 17, 762-765.	1.7	29
41	Micro-structure of ITO ceramics sintered at different temperatures and its effect on the properties of deposited ITO films. Journal of the European Ceramic Society, 2018, 38, 521-533.	2.8	29
42	Microstructural Modification of Laser-Deposited High-Entropy CrFeCoNiMoWC Alloy by Friction Stir Processing: Nanograin Formation and Deformation Mechanism. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 841-854.	1.1	28
43	Influence of electric current on interdiffusion kinetics of W-Ti system during spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2018, 75, 184-190.	1.7	28
44	Thermo-electromagnetic effect on weld microstructure in magnetically assisted laser welding of austenite steel. Journal of Manufacturing Processes, 2019, 41, 111-118.	2.8	28
45	Microstructural evolvement and formation of selective laser melting W–Ni–Cu composite powder. International Journal of Advanced Manufacturing Technology, 2013, 67, 2233-2242.	1.5	26
46	Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technology, 2019, 343, 58-67.	2.1	26
47	Tribological and biological behaviors of laser cladded Ti-based metallic glass composite coatings. Applied Surface Science, 2020, 507, 145104.	3.1	25
48	Microstructure tailoring to enhance strength and ductility in pure tantalum processed by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139352.	2.6	25
49	Additive manufacturing of Al0.3CoCrFeNi high-entropy alloy by powder feeding laser melting deposition. Journal of Alloys and Compounds, 2021, 862, 158286.	2.8	25
50	Effect of heating rate on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy produced by spark plasma sintering. Materials Characterization, 2019, 154, 169-180.	1.9	23
51	Microstructural evolution and wear performance of the high-entropy FeMnCoCr alloy/TiC/CaF2 self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold. Journal of Materials Research, 2019, 34, 1714-1725.	1.2	23
52	Oxygen evolution and corrosion behavior of Pb-CeO2 anodes in sulfuric acid solution. Hydrometallurgy, 2019, 183, 221-229.	1.8	23
53	A novel Fe40Mn40Cr10Co10/SiC medium-entropy nanocomposite reinforced by the nanoparticles-woven architectural structures. Journal of Alloys and Compounds, 2019, 772, 272-279.	2.8	22
54	Comparative study on microstructure and electrochemical corrosion resistance of Al7075 alloy prepared by laser additive manufacturing and forging technology. Journal of Central South University, 2021, 28, 1058-1067.	1.2	22

#	Article	IF	Citations
55	Microstructure and mechanical properties of Al-Fe-Sc-Zr alloy additively manufactured by selective laser melting. Materials Characterization, 2021, 180, 111397.	1.9	22
56	Microstructure and mechanical properties of additive manufactured porous Ti–33Nb–4Sn scaffolds for orthopaedic applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 91.	1.7	21
57	Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scripta Materialia, 2019, 163, 34-39.	2.6	21
58	Microstructure and mechanical performance tailoring of Ti-13Nb-13Zr alloy fabricated by selective laser melting after post heat treatment. Journal of Alloys and Compounds, 2019, 775, 1164-1176.	2.8	21
59	Texture evolution, phase transformation and mechanical properties of selective laser melted Ti-13Nb-13Zr. Materials Characterization, 2018, 145, 185-195.	1.9	20
60	Electromigration-Enhanced Densification Kinetics During Spark Plasma Sintering of Tungsten Powder. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2886-2897.	1.1	20
61	Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5Âwt% NaCl. Journal of Alloys and Compounds, 2021, 864, 158105.	2.8	20
62	Recovery of indium by acid leaching waste ITO target based on neural network. Transactions of Nonferrous Metals Society of China, 2014, 24, 257-262.	1.7	19
63	Nanostructured Co–Cr–Fe alloy surface layer fabricated by combination of laser clad and friction stir processing. Surface and Coatings Technology, 2014, 258, 415-425.	2.2	19
64	Selective Laser Melting of Gas Atomized Al–3.02Mg–0.2Sc–0.1Zr Alloy Powder: Microstructure and Mechanical Properties. Advanced Engineering Materials, 2019, 21, 1800650.	1.6	19
65	Analysis of abnormal grain growth behavior during hot-press sintering of boron carbide. Ceramics International, 2020, 46, 16345-16353.	2.3	19
66	Selective laser melting of Al-3.48Cu-2.03Si-0.48Sc-0.28Zr alloy: Microstructure evolution, properties and metallurgical defects. Intermetallics, 2021, 129, 107008.	1.8	19
67	Extraction of rubidium from kaolin clay waste: Process study. Hydrometallurgy, 2015, 158, 61-67.	1.8	18
68	Effects of oxygen flow velocity on the sintering properties of ITO targets. Journal of Materials Science: Materials in Electronics, 2017, 28, 14711-14719.	1.1	18
69	Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting. Optics and Laser Technology, 2020, 127, 106164.	2.2	18
70	Displacive transformation as pathway to prevent micro-cracks induced by thermal stress in additively manufactured strong and ductile high-entropy alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 1059-1073.	1.7	18
71	The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105358.	1.7	17
72	Microstructure and mechanical property of additively manufactured NiTi alloys: A comparison between selective laser melting and directed energy deposition. Journal of Central South University, 2021, 28, 1028-1042.	1.2	17

#	Article	IF	Citations
73	Effect of pulse current on the diffusion behavior of FeCoCrNiMox-Al couples. Materials Letters, 2019, 253, 381-383.	1.3	16
74	The key metallurgical features of selective laser melting of stainless steel powder for building metallic part. Powder Metallurgy and Metal Ceramics, 2011, 50, 141-150.	0.4	15
75	Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process. Transactions of Nonferrous Metals Society of China, 2012, 22, 2665-2671.	1.7	15
76	Effects of particle size and dispersion methods of In ₂ O ₃ â€6nO ₂ mixed powders on the sintering properties of indium tin oxide ceramics. International Journal of Applied Ceramic Technology, 2018, 15, 89-100.	1.1	15
77	Viscous flow activation energy adaptation by isothermal spark plasma sintering applied with different current mode. Scripta Materialia, 2018, 149, 125-128.	2.6	15
78	Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering. Materials Letters, 2018, 229, 126-129.	1.3	15
79	Valence states, impurities and electrocrystallization behaviors during molten salt electrorefining for preparation of high-purity titanium powder from sponge titanium. Transactions of Nonferrous Metals Society of China, 2014, 24, 553-560.	1.7	14
80	Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites. Transactions of Nonferrous Metals Society of China, 2019, 29, 1484-1494.	1.7	14
81	Two ways of evaluating the wear property of Ti-13Nb-13Zr fabricated by selective laser melting. Materials Letters, 2019, 242, 9-12.	1.3	14
82	Selective laser melted near-beta titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe: Microstructure and mechanical properties. Journal of Central South University, 2021, 28, 1601-1614.	1.2	14
83	Electrochemical corrosion behaviors of Pb-Ag anodes by electric current pulse assisted casting. Journal of Electroanalytical Chemistry, 2019, 847, 113250.	1.9	13
84	Electrochemical properties of powder-pressed Pb–Ag–PbO2 anodes. Transactions of Nonferrous Metals Society of China, 2019, 29, 2422-2429.	1.7	13
85	The preferential growth behaviors of the intermetallics at the W/Co interface during spark plasma sintering. Applied Physics Letters, 2020, 117 , .	1.5	13
86	Accelerated precipitation of the B2 particles and its effect on Al0.3CoCrFeNi high-entropy alloy by electric current assisted annealing. Materials Characterization, 2021, 181, 111434.	1.9	13
87	Producing nanostructured Co–Cr–W alloy surface layer by laser cladding and friction stir processing. Journal of Materials Research, 2015, 30, 717-726.	1.2	12
88	Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy- a Comparison Between Selective Laser Melting and Cast. Frontiers in Materials, 2020, 7, .	1.2	12
89	Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy. Journal of Materials Research and Technology, 2019, 8, 3550-3564.	2.6	11
90	The influence of the local effect of electric current on densification of tungsten powder during spark plasma sintering. Powder Technology, 2019, 356, 769-777.	2.1	11

#	Article	IF	Citations
91	Diffusivity of Ti-Ni Diffusion Couple Enhanced by Pulse Current During Spark Plasma Sintering. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 6-10.	1.0	11
92	Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al–Cu Alloy by Selective Laser Melting. Materials, 2020, 13, 4423.	1.3	11
93	A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co–Cr–Ni–Mo alloy. Applied Surface Science, 2014, 308, 176-183.	3.1	10
94	Effects of element chemical states and grain orientation growth of ITO targets on photoelectric properties of the film. Ceramics International, 2017, 43, 14732-14741.	2.3	10
95	Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion., 2022, 1, 100056.		10
96	Preparation of ultra-fine grain Ni–Al–WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing. Transactions of Nonferrous Metals Society of China, 2015, 25, 3685-3693.	1.7	9
97	Laser deposition technology assisted by friction stir processing for preparation of nanostructured Fe–Cr–Si alloy layer. Surface and Coatings Technology, 2018, 337, 426-433.	2.2	9
98	Effects of sintering processes on the element chemical states of In, Sn and O in ITO targets. Journal of Materials Science: Materials in Electronics, 2018, 29, 7931-7940.	1.1	9
99	Effect of phase transformation on densification kinetics and properties of spark plasma sintered Alo.7CoCrFeNi high-entropy alloy. Materials Characterization, 2020, 160, 110098.	1.9	9
100	Effect of cerium doping on the microstructure and photoelectric properties of Ce-doped ITO films. Applied Surface Science, 2020, 509, 144810.	3.1	9
101	Microstructural evolution and sintering kinetics during spark plasma sintering of Fe and Al blended powder. Transactions of Nonferrous Metals Society of China, 2017, 27, 1594-1601.	1.7	8
102	Improving the densification of indium tin oxide targets via secondary cold isostatic pressing and oxygen exchange treatments. Scripta Materialia, 2018, 155, 109-113.	2.6	8
103	Microstructure evolution and grain orientation in ITO targets and their effects on the film characteristics. Journal of Materials Science: Materials in Electronics, 2018, 29, 14620-14634.	1.1	8
104	Effects of Ag+ in diaphragm electrolysis on oxygen evolution and corrosion behaviors of Pb and Pb Ag anodes. Hydrometallurgy, 2020, 192, 105254.	1.8	8
105	Microstructure and Mechanical Properties of TiC-Reinforced Al–Mg–Sc–Zr Composites Additively Manufactured by Laser Direct Energy Deposition. Acta Metallurgica Sinica (English Letters), 2022, 35, 411-424.	1.5	8
106	Removal of tin and extraction of indium from acid-dissolved solution of waste indium-tin targets. Journal of Central South University, 2014, 21, 1741-1746.	1.2	7
107	Effects of sintering processes on second-phase grain morphology of ITO ceramics and grain growth. Journal of Materials Science: Materials in Electronics, 2017, 28, 15996-16007.	1.1	7
108	Effect of spark plasma sintering on microstructure and friction characteristics of boron carbide. Journal of Micromechanics and Molecular Physics, 2018, 03, 1750014.	0.7	7

#	Article	IF	CITATIONS
109	The effect of carbon doping on microstructure, mechanical properties, wear resistance and cutting performance of AlTiCN coating. Thin Solid Films, 2020, 713, 138344.	0.8	7
110	Effects of Co2+ in diaphragm electrolysis on the electrochemical and corrosion behaviors of Pb Ag and Pb anodes for zinc electrowinning. Hydrometallurgy, 2020, 195, 105412.	1.8	7
111	Microstructure and Corrosion Behavior of Ti-Nb Coatings on NiTi Substrate Fabricated by Laser Cladding. Coatings, 2021, 11, 597.	1.2	7
112	Microstructure and mechanical properties of additive manufactured Inconel 718 alloy strengthened by oxide dispersion with 0.3Âwt% Sc addition. Journal of Alloys and Compounds, 2022, 918, 165763.	2.8	7
113	Viscoplastic friction and microstructural evolution behavior of laser-clad Co–Cr–Ni–Mo coating. Transactions of Nonferrous Metals Society of China, 2013, 23, 681-691.	1.7	6
114	Effect of heat treatment on the dispersion and sintering behaviour of tin doped indium oxide powders. Ceramics International, 2018, 44, 7491-7499.	2.3	6
115	Densification kinetics of boron carbide with medium entropy alloy as a sintering aid during spark plasma sintering. International Journal of Applied Ceramic Technology, 2019, 16, 389-399.	1.1	6
116	Multi-stage spark plasma sintering to study the densification mechanisms of boron carbide. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105351.	1.7	6
117	Microstructure and Mechanical Properties of a Combination Interface between Direct Energy Deposition and Selective Laser Melted Al-Mg-Sc-Zr Alloy. Metals, 2021, 11, 801.	1.0	6
118	Effects of cerium oxide doping on the microstructure and properties of ITO targets and the photoelectric properties of the films. Journal of Materials Science: Materials in Electronics, 2019, 30, 15469-15481.	1.1	5
119	Microstructure and Mechanical Properties of Selective Laser Melted Al–2.51Mn–2.71Mg–0.55Sc–0.29Cu–0.31Zn Alloy Designed by Supersaturated Solid Solution. Acta Metallurgica Sinica (English Letters), 2022, 35, 354-368.	1.5	5
120	Hydrogenation reaction of metallic titanium prepared by molten salt electrolysis. Transactions of Nonferrous Metals Society of China, 2016, 26, 1425-1432.	1.7	4
121	Microstructure and mechanical properties of Al-Si-Ni coating on Cu-Cr substrate prepared by multi-permeation and friction stir processing. Nano Materials Science, 2019, 1, 224-228.	3.9	4
122	Transparent and conductive applications of tin oxide. , 2020, , 579-597.		4
123	Striped Non-Uniform Corrosion Behavior of Non-Equiatomic FeMnCoCr High-Entropy Alloy Prepared by Laser Melting Deposition in 0.1 M H2SO4 Solution. Materials, 2020, 13, 5554.	1.3	4
124	Effect of Pr2O3 on the microstructure and hydrogen evolution property of nickel sulphur coatings electrodeposited on the nickel foam substrate. Materials Letters, 2008, 62, 3462-3464.	1.3	3
125	Electrochemical Behaviors of Powder-Processed Pb-Ag Anodes. Jom, 2019, 71, 2498-2504.	0.9	3
126	A Comparative Study on the Microstructure and Properties of ITO Targets and Thin Films Prepared from Two Different Powders. Acta Metallurgica Sinica (English Letters), 2021, 34, 675-693.	1.5	3

#	Article	IF	CITATIONS
127	Novel approach of the evaluation of electric current density during the spark plasma sintering: Effect on the densification mechanisms of B4C-based ceramics. International Journal of Refractory Metals and Hard Materials, 2022, 102, 105703.	1.7	3
128	Laser solid forming assisted by friction stir processing for preparation of Ni–16Cr–8Fe alloys: Crack repairing and grain refinement. Journal of Materials Research, 2018, 33, 3521-3529.	1.2	2
129	Microstructure, grain orientation, and properties of ITO ceramics sintered with various heating rates. International Journal of Applied Ceramic Technology, 2019, 16, 654-665.	1.1	2
130	The growth kinetic behaviors of the intermetallics at W/Co interface under the current of spark plasma sintering. Materials Research Express, 2021, 8, 106511.	0.8	2
131	Densification and grain growth kinetics of boron carbide powder during ultrahigh temperature spark plasma sintering. Transactions of Nonferrous Metals Society of China, 2022, 32, 1948-1960.	1.7	2
132	The Influence of Porous Structure on the Interdiffusion Kinetics of Cu-Ni System During Spark Plasma Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1799-1807.	1.1	1
133	Composition inhomogeneity reduces cracking susceptibility in additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy produced by laser powder bed fusion. Additive Manufacturing, 2022, 56, 102941.	1.7	1
134	Development of the machines and materials for rapid prototyping & tooling technologies and 3D measurement in Huazhong University of Science and Technology. , 2010, , .		0