
Samuel M Behar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011550/publications.pdf Version: 2024-02-01

SAMILEL M REHAD

#	Article	IF	CITATIONS
1	Multiplexed Strain Phenotyping Defines Consequences of Genetic Diversity in Mycobacterium tuberculosis for Infection and Vaccination Outcomes. MSystems, 2022, 7, e0011022.	1.7	3
2	Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity, 2022, 55, 827-846.e10.	6.6	92
3	Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. Journal of Clinical Investigation, 2021, 131, .	3.9	51
4	CD4 TÂcell help prevents CD8 TÂcell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Reports, 2021, 36, 109696.	2.9	69
5	Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. ELife, 2021, 10, .	2.8	14
6	IFNÎ ³ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Frontiers in Immunology, 2021, 12, 696415.	2.2	2
7	Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunology, 2020, 13, 140-148.	2.7	40
8	Tuberculosis vaccine finds an improved route. Nature, 2020, 577, 31-32.	13.7	6
9	A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathogens, 2020, 16, e1009000.	2.1	22
10	CD11cHiÂmonocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008621.	2.1	36
11	Title is missing!. , 2020, 16, e1008621.		0
12	Title is missing!. , 2020, 16, e1008621.		0
13	Title is missing!. , 2020, 16, e1008621.		Ο
14	Title is missing!. , 2020, 16, e1008621.		0
15	Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Current Opinion in Immunology, 2019, 60, 103-110.	2.4	49
16	TRAV1-2+ CD8+ T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis. Communications Biology, 2019, 2, 203.	2.0	60
17	Functionally Overlapping Variants Control Tuberculosis Susceptibility in Collaborative Cross Mice. MBio, 2019, 10, .	1.8	36
18	Differential skewing of donor-unrestricted and γδT cell repertoires in tuberculosis-infected human lungs. Journal of Clinical Investigation, 2019, 130, 214-230.	3.9	45

#	Article	IF	CITATIONS
19	A new vaccine for tuberculosis in rhesus macaques. Nature Medicine, 2018, 24, 124-126.	15.2	12
20	Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathogens, 2018, 14, e1007060.	2.1	78
21	Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during <i>Mycobacterium tuberculosis</i> Infection. MBio, 2017, 8, .	1.8	65
22	Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis. PLoS Pathogens, 2017, 13, e1006704.	2.1	20
23	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	15.2	273
24	Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype. MBio, 2016, 7, .	1.8	116
25	IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection. Scientific Reports, 2016, 6, 36720.	1.6	37
26	Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis. Journal of Immunology, 2016, 196, 1822-1831.	0.4	24
27	A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathogens, 2016, 12, e1005380.	2.1	44
28	TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathogens, 2016, 12, e1005490.	2.1	147
29	Autophagy is not the answer. Nature, 2015, 528, 482-483.	13.7	25
30	Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection. PLoS Pathogens, 2015, 11, e1004849.	2.1	29
31	Chromatin Decondensation and T Cell Hyperresponsiveness in Diabetes-Associated Hyperglycemia. Journal of Immunology, 2014, 193, 4457-4468.	0.4	34
32	iNKT Cell Production of GM-CSF Controls Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1003805.	2.1	108
33	Macrophages clean up: efferocytosis and microbial control. Current Opinion in Microbiology, 2014, 17, 17-23.	2.3	134
34	In search of a new paradigm for protective immunity to TB. Nature Reviews Microbiology, 2014, 12, 289-299.	13.6	259
35	Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: Immunity interruptus. Seminars in Immunology, 2014, 26, 559-577.	2.7	53
36	Fixing the odds against tuberculosis. Nature, 2014, 511, 39-40.	13.7	6

#	Article	IF	CITATIONS
37	Tolerance has its limits: how the thymus copes with infection. Trends in Immunology, 2013, 34, 502-510.	2.9	86
38	Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing. Cell, 2013, 155, 1296-1308.	13.5	296
39	T Cells Home to the Thymus and Control Infection. Journal of Immunology, 2013, 190, 1646-1658.	0.4	39
40	Antigen-Specific CD8+ T Cells and Protective Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 141-163.	0.8	77
41	Dying to Live: How the Death Modality of the Infected Macrophage Affects Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 103-120.	0.8	113
42	Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1827-1832.	3.3	129
43	IL-1β Promotes Antimicrobial Immunity in Macrophages by Regulating TNFR Signaling and Caspase-3 Activation. Journal of Immunology, 2013, 190, 4196-4204.	0.4	180
44	Efferocytosis Is an Innate Antibacterial Mechanism. Cell Host and Microbe, 2012, 12, 289-300.	5.1	226
45	The Tim3–Galectin 9 Pathway Induces Antibacterial Activity in Human Macrophages Infected with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2012, 189, 5896-5902.	0.4	80
46	Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 2011, 4, 279-287.	2.7	361
47	Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. Immunology Letters, 2011, 139, 33-41.	1.1	16
48	Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends in Immunology, 2011, 32, 345-349.	2.9	215
49	A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1537-1549.	6.2	188
50	Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes and Infection, 2011, 13, 749-756.	1.0	62
51	Requirement for Invariant Chain in Macrophages for Mycobacterium tuberculosis Replication and CD1d Antigen Presentation. Infection and Immunity, 2011, 79, 3053-3063.	1.0	11
52	Cardiolipin Binds to CD1d and Stimulates CD1d-Restricted γδT Cells in the Normal Murine Repertoire. Journal of Immunology, 2011, 186, 4771-4781.	0.4	97
53	Mycobacterium tuberculosisDirects Immunofocusing of CD8+T Cell Responses Despite Vaccination. Journal of Immunology, 2011, 186, 1627-1637.	0.4	29
54	Development of a Glycoprotein D-Expressing Dominant-Negative and Replication-Defective Herpes Simplex Virus 2 (HSV-2) Recombinant Viral Vaccine against HSV-2 Infection in Mice. Journal of Virology, 2011, 85, 5036-5047.	1.5	25

#	Article	IF	CITATIONS
55	Regulation of neutrophils by interferon-Î ³ limits lung inflammation during tuberculosis infection. Journal of Experimental Medicine, 2011, 208, 2251-2262.	4.2	314
56	Synovial fibroblasts selfâ€direct multicellular lining architecture and synthetic function in threeâ€dimensional organ culture. Arthritis and Rheumatism, 2010, 62, 742-752.	6.7	102
57	Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nature Immunology, 2010, 11, 751-758.	7.0	232
58	Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?. Nature Reviews Microbiology, 2010, 8, 668-674.	13.6	380
59	Tim3 binding to galectin-9 stimulates antimicrobial immunity. Journal of Experimental Medicine, 2010, 207, 2343-2354.	4.2	165
60	Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. Journal of Clinical Investigation, 2010, 120, 2889-2899.	3.9	71
61	EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity. PLoS Pathogens, 2010, 6, e1000957.	2.1	84
62	α-Calactosylceramide as a Therapeutic Agent for Pulmonary <i>Mycobacterium tuberculosis</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 841-847.	2.5	51
63	Use of the T-SPOT. <i>TB</i> Assay to Detect Latent Tuberculosis Infection Among Rheumatic Disease Patients on Immunosuppressive Therapy. Journal of Rheumatology, 2009, 36, 546-551.	1.0	42
64	Vaccine-Induced Antibody Isotypes Are Skewed by Impaired CD4 T Cell and Invariant NKT Cell Effector Responses in MyD88-Deficient Mice. Journal of Immunology, 2009, 183, 2252-2260.	0.4	12
65	Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nature Immunology, 2009, 10, 899-906.	7.0	303
66	Discordant QuantiFERON-TB Gold Test Results Among US Healthcare Workers With Increased Risk of Latent Tuberculosis Infection: A Problem or Solution?. Infection Control and Hospital Epidemiology, 2008, 29, 878-886.	1.0	51
67	Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. Journal of Experimental Medicine, 2008, 205, 2791-2801.	4.2	325
68	Mycolyltransferase-mediated Glycolipid Exchange in Mycobacteria. Journal of Biological Chemistry, 2008, 283, 28835-28841.	1.6	47
69	Vaccine-Elicited 10-Kilodalton Culture Filtrate Protein-Specific CD8 + T Cells Are Sufficient To Mediate Protection against Mycobacterium tuberculosis Infection. Infection and Immunity, 2008, 76, 2249-2255.	1.0	45
70	Tuberculosis Triggers a Tissue-Dependent Program of Differentiation and Acquisition of Effector Functions by Circulating Monocytes. Journal of Immunology, 2008, 181, 6349-6360.	0.4	91
71	Innate Invariant NKT Cells Recognize Mycobacterium tuberculosis–Infected Macrophages, Produce Interferon-γ, and Kill Intracellular Bacteria. PLoS Pathogens, 2008, 4, e1000239.	2.1	177
72	<i>Mycobacterium tuberculosis</i> -Specific CD8+ T Cells Require Perforin to Kill Target Cells and Provide Protection In Vivo. Journal of Immunology, 2008, 181, 8595-8603.	0.4	126

#	Article	IF	CITATIONS
73	Bacterial Protein Secretion Is Required for Priming of CD8 ⁺ T Cells Specific for the <i>Mycobacterium tuberculosis</i> Antigen CFP10. Infection and Immunity, 2008, 76, 4199-4205.	1.0	40
74	Next generation: tuberculosis vaccines that elicit protective CD8+T cells. Expert Review of Vaccines, 2007, 6, 441-456.	2.0	40
75	Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunology, 2006, 7, 978-986.	7.0	567
76	The LFA-1 Adhesion Molecule Is Required for Protective Immunity during Pulmonary <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2006, 176, 4914-4922.	0.4	48
77	Antigen-Specific CD8+T Cells and the Development of Central Memory duringMycobacterium tuberculosisInfection. Journal of Immunology, 2006, 177, 6361-6369.	0.4	89
78	Mycobacterium tuberculosis-Specific CD8+ T Cells and Their Role in Immunity. Critical Reviews in Immunology, 2006, 26, 317-352.	1.0	135
79	The role of group 1 and group 2 CD1-restricted T cells in microbial immunity. Microbes and Infection, 2005, 7, 544-551.	1.0	23
80	Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+T cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L274-L279.	1.3	92
81	Interplay of Cytokines and Microbial Signals in Regulation of CD1d Expression and NKT Cell Activation. Journal of Immunology, 2005, 175, 3584-3593.	0.4	99
82	In Vivo Depletion of CD11c+ Cells Delays the CD4+ T Cell Response to <i>Mycobacterium tuberculosis</i> and Exacerbates the Outcome of Infection. Journal of Immunology, 2005, 175, 3268-3272.	0.4	162
83	Anamnestic Responses of Mice following Mycobacterium tuberculosis Infection. Infection and Immunity, 2005, 73, 6110-6118.	1.0	23
84	Cytolytic CD8+ T Cells Recognizing CFP10 Are Recruited to the Lung after Mycobacterium tuberculosis Infection. Journal of Experimental Medicine, 2004, 200, 1479-1489.	4.2	123
85	The Major Histocompatibility Complex Haplotype Affects T-Cell Recognition of Mycobacterial Antigens but Not Resistance to Mycobacterium tuberculosis in C3H Mice. Infection and Immunity, 2004, 72, 6790-6798.	1.0	37
86	Susceptibility to Mycobacterium tuberculosis: lessons from inbred strains of mice. Tuberculosis, 2003, 83, 279-285.	0.8	63
87	Structural Features of the Acyl Chain Determine Self-phospholipid Antigen Recognition by a CD1d-restricted Invariant NKT (iNKT) Cell. Journal of Biological Chemistry, 2003, 278, 47508-47515.	1.6	123
88	Toll-Like Receptor 4-Defective C3H/HeJ Mice Are Not More Susceptible than Other C3H Substrains to Infection with Mycobacterium tuberculosis. Infection and Immunity, 2003, 71, 4112-4118.	1.0	72
89	Role of CD1d-Restricted NKT Cells in Microbial Immunity. Infection and Immunity, 2003, 71, 5447-5455.	1.0	153
90	Lysosomal Localization of Murine CD1d Mediated by AP-3 Is Necessary for NK T Cell Development. Journal of Immunology, 2003, 171, 4149-4155.	0.4	85

#	Article	IF	CITATIONS
91	Conservation of CD1 Intracellular Trafficking Patterns Between Mammalian Species. Journal of Immunology, 2002, 169, 6951-6958.	0.4	22
92	Activation of NKT Cells Protects Mice from Tuberculosis. Infection and Immunity, 2002, 70, 6302-6309.	1.0	172
93	Fine Specificity of TCR Complementarity-Determining Region Residues and Lipid Antigen Hydrophilic Moieties in the Recognition of a CD1-Lipid Complex. Journal of Immunology, 2002, 168, 3933-3940.	0.4	58
94	Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity. Infection and Immunity, 2002, 70, 4501-4509.	1.0	352
95	Characterization of guinea-pig group 1 CD1 proteins. Immunology, 2002, 106, 159-172.	2.0	61
96	Regulation of CD1 Function and NK1.1+ T Cell Selection and Maturation by Cathepsin S. Immunity, 2001, 15, 909-919.	6.6	75
97	Gamma Interferon-Producing CD4+ T Lymphocytes in the Lung Correlate with Resistance to Infection withMycobacterium tuberculosis. Infection and Immunity, 2001, 69, 2666-2674.	1.0	150
98	Molecular Recognition of Human CD1b Antigen Complexes: Evidence for a Common Pattern of Interaction with $\hat{I}\pm\hat{I}^2$ TCRs. Journal of Immunology, 2000, 165, 4494-4504.	0.4	49
99	Diverse CD1d-restricted T cells: diverse phenotypes, and diverse functions. Seminars in Immunology, 2000, 12, 551-560.	2.7	43
100	Murine CD1d-Restricted T Cell Recognition of Cellular Lipids. Immunity, 2000, 12, 211-221.	6.6	445
101	Susceptibility of Mice Deficient in CD1D or TAP1 to Infection with Mycobacterium tuberculosis. Journal of Experimental Medicine, 1999, 189, 1973-1980.	4.2	329
102	CD1—A New Paradigm for Antigen Presentation and T Cell Activation. Clinical Immunology and Immunopathology, 1998, 87, 8-14.	2.1	39
103	Clonally expanded V?12+ (AV12S1),CD8+ T cells from a patient with rheumatoid arthritis are autoreactive. Arthritis and Rheumatism, 1998, 41, 498-506.	6.7	11
104	The Mannose Receptor Delivers Lipoglycan Antigens to Endosomes for Presentation to T Cells by CD1b Molecules. Immunity, 1997, 6, 187-197.	6.6	320
105	Cytoplasmic Tail-Dependent Localization of CD1b Antigen-Presenting Molecules to MIICs. Science, 1996, 273, 349-352.	6.0	224
106	Mechanisms of autoimmune disease induction. Arthritis and Rheumatism, 1995, 38, 458-476.	6.7	98
107	A pathway of costimulation that prevents anergy in CD28- T cells: B7-independent costimulation of CD1-restricted T cells Journal of Experimental Medicine, 1995, 182, 2007-2018.	4.2	93
108	Expansions of V?12 CD8+ T-Cells in Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 1995, 756, 130-137.	1.8	2

#	Article	IF	CITATIONS
109	Recognition of a lipid antigen by CD1-restricted $\hat{I} \pm \hat{I}^2 + T$ cells. Nature, 1994, 372, 691-694.	13.7	962
110	Characterization of somatically mutated S107 VH11-encoded anti-DNA autoantibodies derived from autoimmune (NZB x NZW)F1 mice Journal of Experimental Medicine, 1991, 173, 731-741.	4.2	53
111	The Molecular Origin of Anti-DNA Antibodies. International Reviews of Immunology, 1989, 5, 23-42.	1.5	14
112	Somatic Diversification of Anti-DNA Antibodies. Annals of the New York Academy of Sciences, 1988, 546, 188-188.	1.8	0
113	Somatic diversification of the S107 (T15) VH11 germ-line gene that encodes the heavy-chain variable region of antibodies to double-stranded DNA in (NZB x NZW)F1 mice Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3970-3974.	3.3	41
114	Studies on the Somatic Instability of Immunoglobulin Genes in vivo and in Cultured Cells. Immunological Reviews, 1987, 96, 75-90.	2.8	10
115	The role of monoclonal antibodies and the recombinant DNA technology in studying autoantibody production. Cellular Immunology, 1986, 99, 29-37.	1.4	1
116	Analysis of Peripheral Blood and Salivary Gland Lymphocytes in Sjogren's Syndrome. , 1983, , 290-290.		0
117	Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. , 0, .		1