Guifen Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011429/publications.pdf Version: 2024-02-01

CHIEFN LU

#	Article	IF	CITATIONS
1	A corrole-based fluorescent probe for detection of sulfur ion and its application in living cells. Dyes and Pigments, 2022, 197, 109941.	3.7	14
2	Preparation and third order nonlinear optical properties of corrole functionalized GO nanohybrids. Optics and Laser Technology, 2022, 149, 107813.	4.6	11
3	A near-infrared fluorescent probe based on corrole derivative with large Stokes shift for detection of hydrogen sulfide in water and living cells. Dyes and Pigments, 2022, 204, 110445.	3.7	13
4	Synthesis, characterization and third order nonlinear optical properties of <i>trans</i> -A ₂ B-type cobalt corroles. New Journal of Chemistry, 2021, 45, 2103-2109.	2.8	7
5	Preparation and Photocatalytic Studies on Nanocomposites of 4â€Hydroxylphenyl‣ubstituted Corrole/TiO ₂ towards Methyl Orange Photodegradation. ChemistrySelect, 2021, 6, 6841-6846.	1.5	3
6	Nanoarchitectonic Composites of Mixed and Covalently Linked Multiwalled Carbon Nanotubes and Tetra-[<i>î±</i> -(<i>p</i> -amino)benzyloxyl] Phthalocyanine Zinc(II). Journal of Nanoscience and Nanotechnology, 2020, 20, 2713-2721.	0.9	3
7	Cobalt Oxide Nanoparticles/Nitrogen-Doped Graphene as the Highly Efficient Oxygen Reduction Electrocatalyst for Rechargeable Zinc-Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 343-350.	6.7	30
8	Synergistic photocatalytic performance of chemically modified amino phthalocyanine-GPTMS/TiO2 for the degradation of Acid Black 1. Inorganic Chemistry Communication, 2020, 113, 107795.	3.9	14
9	Preparation of new semiconducting corrole nanostructures and their application as gas sensor. Synthetic Metals, 2019, 252, 69-75.	3.9	5
10	The lower rather than higher density charge carrier determines the NH ₃ -sensing nature and sensitivity of ambipolar organic semiconductors. Materials Chemistry Frontiers, 2018, 2, 1009-1016.	5.9	38
11	TTF-fused heteroleptic bis(phthalocyaninato) europium double-decker complexes. Synthesis, spectroscopic, and electrochemical properties. Dyes and Pigments, 2018, 156, 167-174.	3.7	13
12	Construction of mixed corrole–phthalocyanine europium triple-decker complexes involving <i>meso</i> -substituted <i>trans</i> -A ₂ B-corrole. New Journal of Chemistry, 2018, 42, 2498-2503.	2.8	5
13	Synthesis, spectroscopic characterization and photocatalytic properties of corrole modified GPTMS/TiO2 nanoparticles. Inorganic Chemistry Communication, 2018, 98, 165-168.	3.9	7
14	Corrole functionalized iron oxide nanocomposites as enhanced peroxidase mimic and their application in H2O2 and glucose colorimetric sensing. Engineered Science, 2018, , .	2.3	19
15	Dysprosium Heteroleptic Corrole-Phthalocyanine Triple-Decker Complexes: Synthesis, Crystal Structure, and Electrochemical and Magnetic Properties. Inorganic Chemistry, 2017, 56, 11503-11512.	4.0	20
16	Electrochemistry of Nitrated Nâ€Confused Freeâ€Base Tetraarylâ€Porphyrins in Nonaqueous Media. Chemistry - A European Journal, 2015, 21, 14579-14588.	3.3	8
17	Synthesis and Characterization of Rare Earth Corrole–Phthalocyanine Heteroleptic Triple-Decker Complexes. Inorganic Chemistry, 2015, 54, 5795-5805.	4.0	20
18	A facile synthetic route to <i>meso</i> -tetraaryl substituted N -5 sapphyrins and first single crystal X-ray analysis confirming the pyrrole inverted structure. Journal of Porphyrins and Phthalocyanines, 2015, 19, 794-802.	0.8	16

GUIFEN LU

#	Article	IF	CITATIONS
19	Self-assembled organic nanostructures and nonlinear optical properties of heteroleptic corrole–phthalocyanine europium triple-decker complexes. Dyes and Pigments, 2015, 121, 38-45.	3.7	29
20	A new class of rare earth tetrapyrrole sandwich complexes containing corrole and phthalocyanine macrocycles: synthesis, physicochemical characterization and X-ray analysis. Chemical Communications, 2015, 51, 2411-2413.	4.1	28
21	Europium Triple-Decker Complexes Containing Phthalocyanine and Nitrophenyl–Corrole Macrocycles. Inorganic Chemistry, 2015, 54, 9211-9222.	4.0	24
22	Synthesis, structural characterization and protonation/deprotonation of hydroxyl-substituted free-base tetraphenylporphyrins in nonaqueous media. Journal of Porphyrins and Phthalocyanines, 2013, 17, 941-953.	0.8	8
23	Î2-Nitro-substituted free-base, iron(III) and manganese(III) tetraarylporphyrins: synthesis, electrochemistry and effect of the NO ₂ substituent on spectra and redox potentials in non-aqueous media. Journal of Porphyrins and Phthalocyanines, 2013, 17, 857-869.	0.8	27
24	Synthesis, characterization and solvent/structural effects on spectral and redox properties of cobalt triphenylcorroles in nonaqueous media. Journal of Porphyrins and Phthalocyanines, 2012, 16, 958-967.	0.8	23
25	Tuning the semiconducting nature of bis(phthalocyaninato) holmium complexes via peripheral substituents. Journal of Materials Chemistry, 2012, 22, 22142.	6.7	51
26	Solution-processed thin films based on sandwich-type mixed (phthalocyaninato)(porphyrinato) europium triple-deckers: Structures and comparative performances in ammonia sensing. Sensors and Actuators B: Chemical, 2012, 166-167, 500-507.	7.8	39
27	Reductive dechlorination of DDT electrocatalyzed by synthetic cobalt porphyrins in N,N′-dimethylformamide. Journal of Porphyrins and Phthalocyanines, 2011, 15, 66-74.	0.8	19
28	Synthesis and electrochemical properties of meso-phenyl substituted copper corroles: Solvent effect on copper oxidation state. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1265-1274.	0.8	19
29	Nanoscale Hollow Spheres of an Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium Doubleâ€Đecker Complex. European Journal of Inorganic Chemistry, 2010, 2010, 753-757.	2.0	14
30	Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal–ligand coordination bonding. Journal of Materials Chemistry, 2009, 19, 2417.	6.7	94
31	Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. Journal of the American Chemical Society, 2008, 130, 11623-11630.	13.7	146
32	Lanthanide(III) Double-Decker Complexes with Octaphenoxy- or Octathiophenoxyphthalocyaninato Ligands – Revealing the Electron-Withdrawing Nature of the Phenoxy and Thiophenoxy Groups in the Double-Decker Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 3703-3709.	2.0	42